13 research outputs found

    Specimens at the Center: An Informatics Workflow and Toolkit for Specimen-level analysis of Public DNA database data

    Get PDF
    Major public DNA databases — NCBI GenBank, the DNA DataBank of Japan (DDBJ), and the European Molecular Biology Laboratory (EMBL) — are invaluable biodiversity libraries. Systematists and other biodiversity scientists commonly mine these databases for sequence data to use in phylogenetic studies, but such studies generally use only the taxonomic identity of the sequenced tissue, not the specimen identity. Thus studies that use DNA supermatrices to construct phylogenetic trees with species at the tips typically do not take advantage of the fact that for many individuals in the public DNA databases, several DNA regions have been sampled; and for many species, two or more individuals have been sampled. Thus these studies typically do not make full use of the multigene datasets in public DNA databases to test species coherence and select optimal sequences to represent a species. In this study, we introduce a set of tools developed in the R programming language to construct individual-based trees from NCBI GenBank data and present a set of trees for the genus Carex (Cyperaceae) constructed using these methods. For the more than 770 species for which we found sequence data, our approach recovered an average of 1.85 gene regions per specimen, up to seven for some specimens, and more than 450 species represented by two or more specimens. Depending on the subset of genes analyzed, we found up to 42% of species monophyletic. We introduce a simple tree statistic—the Taxonomic Disparity Index (TDI)—to assist in curating specimen-level datasets and provide code for selecting maximally informative (or, conversely, minimally misleading) sequences as species exemplars. While tailored to the Carex dataset, the approach and code presented in this paper can readily be generalized to constructing individual-level trees from large amounts of data for any species group

    Specimens at the Center: An Informatics Workflow and Toolkit for Specimen-level analysis of Public DNA database data

    No full text
    Pham, Kasey K. [et al.]Major public DNA databases — NCBI GenBank, the DNA DataBank of Japan (DDBJ), and the European Molecular Biology Laboratory (EMBL) — are invaluable biodiversity libraries. Systematists and other biodiversity scientists commonly mine these databases for sequence data to use in phylogenetic studies, but such studies generally use only the taxonomic identity of the sequenced tissue, not the specimen identity. Thus studies that use DNA supermatrices to construct phylogenetic trees with species at the tips typically do not take advantage of the fact that for many individuals in the public DNA databases, several DNA regions have been sampled; and for many species, two or more individuals have been sampled. Thus these studies typically do not make full use of the multigene datasets in public DNA databases to test species coherence and select optimal sequences to represent a species. In this study, we introduce a set of tools developed in the R programming language to construct individual-based trees from NCBI GenBank data and present a set of trees for the genus Carex (Cyperaceae) constructed using these methods. For the more than 770 species for which we found sequence data, our approach recovered an average of 1.85 gene regions per specimen, up to seven for some specimens, and more than 450 species represented by two or more specimens. Depending on the subset of genes analyzed, we found up to 42% of species monophyletic. We introduce a simple tree statistic—the Taxonomic Disparity Index (TDI)—to assist in curating specimen-level datasets and provide code for selecting maximally informative (or, conversely, minimally misleading) sequences as species exemplars. While tailored to the Carex dataset, the approach and code presented in this paper can readily be generalized to constructing individual-level trees from large amounts of data for any species group.Funding for this work was provided by the National Science Foundation (Award #1255901 to ALH andMJWand Award #1256033 to EHR), including an REU supplement that supported KKP’s work.Peer reviewe

    Specimens at the Center: An Informatics Workflow and Toolkit for Specimen-level analysis of Public DNA database data

    No full text
    Major public DNA databases - NCBI GenBank, the DNA DataBank of Japan (DDBJ), and the European Molecular Biology Laboratory (EMBL) - are invaluable biodiversity libraries. Systematists and other biodiversity scientists commonly mine these databases for sequence data to use in phylogenetic studies, but such studies generally use only the taxonomic identity of the sequenced tissue, not the specimen identity. Thus studies that use DNA supermatrices to construct phylogenetic trees with species at the tips typically do not take advantage of the fact that for many individuals in the public DNA databases, several DNA regions have been sampled; and for many species, two or more individuals have been sampled. Thus these studies typically do not make full use of the multigene datasets in public DNA databases to test species coherence and select optimal sequences to represent a species. In this study, we introduce a set of tools developed in the R programming language to construct individual-based trees from NCBI GenBank data and present a set of trees for the genus Carex (Cyperaceae) constructed using these methods. For the more than 770 species for which we found sequence data, our approach recovered an average of 1.85 gene regions per specimen, up to seven for some specimens, and more than 450 species represented by two or more specimens. Depending on the subset of genes analyzed, we found up to 42% of species monophyletic. We introduce a simple tree statistic-the Taxonomic Disparity Index (TDI)-to assist in curating specimen-level datasets and provide code for selecting maximally informative (or, conversely, minimally misleading) sequences as species exemplars. While tailored to the Carex dataset, the approach and code presented in this paper can readily be generalized to constructing individual-level trees from large amounts of data for any species group

    Data from: Specimens at the center: an informatics workflow and toolkit for specimen-level analysis of public DNA database data

    No full text
    Major public DNA databases — NCBI GenBank, the DNA DataBank of Japan (DDBJ), and the European Molecular Biology Laboratory (EMBL) — are invaluable biodiversity libraries. Systematists and other biodiversity scientists commonly mine these databases for sequence data to use in phylogenetic studies, but such studies generally use only the taxonomic identity of the sequenced tissue, not the specimen identity. Thus studies that use DNA supermatrices to construct phylogenetic trees with species at the tips typically do not take advantage of the fact that for many individuals in the public DNA databases, several DNA regions have been sampled; and for many species, two or more individuals have been sampled. Thus these studies typically do not make full use of the multigene datasets in public DNA databases to test species coherence and select optimal sequences to represent a species. In this study, we introduce a set of tools developed in the R programming language to construct individual-based trees from NCBI GenBank data and present a set of trees for the genus Carex (Cyperaceae) constructed using these methods. For the more than 770 species for which we found sequence data, our approach recovered an average of 1.85 gene regions per specimen, up to seven for some specimens, and more than 450 species represented by two or more specimens. Depending on the subset of genes analyzed, we found up to 42% of species monophyletic. We introduce a simple tree statistic—the Taxonomic Disparity Index (TDI)—to assist in curating specimen-level datasets and provide code for selecting maximally informative (or, conversely, minimally misleading) sequences as species exemplars. While tailored to the Carex dataset, the approach and code presented in this paper can readily be generalized to constructing individual-level trees from large amounts of data for any species group

    Global Impact of the COVID-19 Pandemic on Stroke Volumes and Cerebrovascular Events: One-Year Follow-up.

    No full text
    BACKGROUND AND OBJECTIVES Declines in stroke admission, intravenous thrombolysis, and mechanical thrombectomy volumes were reported during the first wave of the COVID-19 pandemic. There is a paucity of data on the longer-term effect of the pandemic on stroke volumes over the course of a year and through the second wave of the pandemic. We sought to measure the impact of the COVID-19 pandemic on the volumes of stroke admissions, intracranial hemorrhage (ICH), intravenous thrombolysis (IVT), and mechanical thrombectomy over a one-year period at the onset of the pandemic (March 1, 2020, to February 28, 2021) compared with the immediately preceding year (March 1, 2019, to February 29, 2020). METHODS We conducted a longitudinal retrospective study across 6 continents, 56 countries, and 275 stroke centers. We collected volume data for COVID-19 admissions and 4 stroke metrics: ischemic stroke admissions, ICH admissions, intravenous thrombolysis treatments, and mechanical thrombectomy procedures. Diagnoses were identified by their ICD-10 codes or classifications in stroke databases. RESULTS There were 148,895 stroke admissions in the one-year immediately before compared to 138,453 admissions during the one-year pandemic, representing a 7% decline (95% confidence interval [95% CI 7.1, 6.9]; p<0.0001). ICH volumes declined from 29,585 to 28,156 (4.8%, [5.1, 4.6]; p<0.0001) and IVT volume from 24,584 to 23,077 (6.1%, [6.4, 5.8]; p<0.0001). Larger declines were observed at high volume compared to low volume centers (all p<0.0001). There was no significant change in mechanical thrombectomy volumes (0.7%, [0.6,0.9]; p=0.49). Stroke was diagnosed in 1.3% [1.31,1.38] of 406,792 COVID-19 hospitalizations. SARS-CoV-2 infection was present in 2.9% ([2.82,2.97], 5,656/195,539) of all stroke hospitalizations. DISCUSSION There was a global decline and shift to lower volume centers of stroke admission volumes, ICH volumes, and IVT volumes during the 1st year of the COVID-19 pandemic compared to the prior year. Mechanical thrombectomy volumes were preserved. These results suggest preservation in the stroke care of higher severity of disease through the first pandemic year. TRIAL REGISTRATION INFORMATION This study is registered under NCT04934020

    Global impact of the COVID-19 pandemic on subarachnoid haemorrhage hospitalisations, aneurysm treatment and in-hospital mortality: 1-year follow-up

    No full text
    Background: Prior studies indicated a decrease in the incidences of aneurysmal subarachnoid haemorrhage (aSAH) during the early stages of the COVID-19 pandemic. We evaluated differences in the incidence, severity of aSAH presentation, and ruptured aneurysm treatment modality during the first year of the COVID-19 pandemic compared with the preceding year. Methods: We conducted a cross-sectional study including 49 countries and 187 centres. We recorded volumes for COVID-19 hospitalisations, aSAH hospitalisations, Hunt-Hess grade, coiling, clipping and aSAH in-hospital mortality. Diagnoses were identified by International Classification of Diseases, 10th Revision, codes or stroke databases from January 2019 to May 2021. Results: Over the study period, there were 16 247 aSAH admissions, 344 491 COVID-19 admissions, 8300 ruptured aneurysm coiling and 4240 ruptured aneurysm clipping procedures. Declines were observed in aSAH admissions (-6.4% (95% CI -7.0% to -5.8%), p=0.0001) during the first year of the pandemic compared with the prior year, most pronounced in high-volume SAH and high-volume COVID-19 hospitals. There was a trend towards a decline in mild and moderate presentations of subarachnoid haemorrhage (SAH) (mild: -5% (95% CI -5.9% to -4.3%), p=0.06; moderate: -8.3% (95% CI -10.2% to -6.7%), p=0.06) but no difference in higher SAH severity. The ruptured aneurysm clipping rate remained unchanged (30.7% vs 31.2%, p=0.58), whereas ruptured aneurysm coiling increased (53.97% vs 56.5%, p=0.009). There was no difference in aSAH in-hospital mortality rate (19.1% vs 20.1%, p=0.12). Conclusion: During the first year of the pandemic, there was a decrease in aSAH admissions volume, driven by a decrease in mild to moderate presentation of aSAH. There was an increase in the ruptured aneurysm coiling rate but neither change in the ruptured aneurysm clipping rate nor change in aSAH in-hospital mortality

    Coronal Heating as Determined by the Solar Flare Frequency Distribution Obtained by Aggregating Case Studies

    Full text link
    Flare frequency distributions represent a key approach to addressing one of the largest problems in solar and stellar physics: determining the mechanism that counter-intuitively heats coronae to temperatures that are orders of magnitude hotter than the corresponding photospheres. It is widely accepted that the magnetic field is responsible for the heating, but there are two competing mechanisms that could explain it: nanoflares or Alfv\'en waves. To date, neither can be directly observed. Nanoflares are, by definition, extremely small, but their aggregate energy release could represent a substantial heating mechanism, presuming they are sufficiently abundant. One way to test this presumption is via the flare frequency distribution, which describes how often flares of various energies occur. If the slope of the power law fitting the flare frequency distribution is above a critical threshold, α=2\alpha=2 as established in prior literature, then there should be a sufficient abundance of nanoflares to explain coronal heating. We performed >>600 case studies of solar flares, made possible by an unprecedented number of data analysts via three semesters of an undergraduate physics laboratory course. This allowed us to include two crucial, but nontrivial, analysis methods: pre-flare baseline subtraction and computation of the flare energy, which requires determining flare start and stop times. We aggregated the results of these analyses into a statistical study to determine that α=1.63±0.03\alpha = 1.63 \pm 0.03. This is below the critical threshold, suggesting that Alfv\'en waves are an important driver of coronal heating.Comment: 1,002 authors, 14 pages, 4 figures, 3 tables, published by The Astrophysical Journal on 2023-05-09, volume 948, page 7

    Global burden of 288 causes of death and life expectancy decomposition in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    No full text
    BackgroundRegular, detailed reporting on population health by underlying cause of death is fundamental for public health decision making. Cause-specific estimates of mortality and the subsequent effects on life expectancy worldwide are valuable metrics to gauge progress in reducing mortality rates. These estimates are particularly important following large-scale mortality spikes, such as the COVID-19 pandemic. When systematically analysed, mortality rates and life expectancy allow comparisons of the consequences of causes of death globally and over time, providing a nuanced understanding of the effect of these causes on global populations.MethodsThe Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 cause-of-death analysis estimated mortality and years of life lost (YLLs) from 288 causes of death by age-sex-location-year in 204 countries and territories and 811 subnational locations for each year from 1990 until 2021. The analysis used 56 604 data sources, including data from vital registration and verbal autopsy as well as surveys, censuses, surveillance systems, and cancer registries, among others. As with previous GBD rounds, cause-specific death rates for most causes were estimated using the Cause of Death Ensemble model—a modelling tool developed for GBD to assess the out-of-sample predictive validity of different statistical models and covariate permutations and combine those results to produce cause-specific mortality estimates—with alternative strategies adapted to model causes with insufficient data, substantial changes in reporting over the study period, or unusual epidemiology. YLLs were computed as the product of the number of deaths for each cause-age-sex-location-year and the standard life expectancy at each age. As part of the modelling process, uncertainty intervals (UIs) were generated using the 2·5th and 97·5th percentiles from a 1000-draw distribution for each metric. We decomposed life expectancy by cause of death, location, and year to show cause-specific effects on life expectancy from 1990 to 2021. We also used the coefficient of variation and the fraction of population affected by 90% of deaths to highlight concentrations of mortality. Findings are reported in counts and age-standardised rates. Methodological improvements for cause-of-death estimates in GBD 2021 include the expansion of under-5-years age group to include four new age groups, enhanced methods to account for stochastic variation of sparse data, and the inclusion of COVID-19 and other pandemic-related mortality—which includes excess mortality associated with the pandemic, excluding COVID-19, lower respiratory infections, measles, malaria, and pertussis. For this analysis, 199 new country-years of vital registration cause-of-death data, 5 country-years of surveillance data, 21 country-years of verbal autopsy data, and 94 country-years of other data types were added to those used in previous GBD rounds.FindingsThe leading causes of age-standardised deaths globally were the same in 2019 as they were in 1990; in descending order, these were, ischaemic heart disease, stroke, chronic obstructive pulmonary disease, and lower respiratory infections. In 2021, however, COVID-19 replaced stroke as the second-leading age-standardised cause of death, with 94·0 deaths (95% UI 89·2–100·0) per 100 000 population. The COVID-19 pandemic shifted the rankings of the leading five causes, lowering stroke to the third-leading and chronic obstructive pulmonary disease to the fourth-leading position. In 2021, the highest age-standardised death rates from COVID-19 occurred in sub-Saharan Africa (271·0 deaths [250·1–290·7] per 100 000 population) and Latin America and the Caribbean (195·4 deaths [182·1–211·4] per 100 000 population). The lowest age-standardised death rates from COVID-19 were in the high-income super-region (48·1 deaths [47·4–48·8] per 100 000 population) and southeast Asia, east Asia, and Oceania (23·2 deaths [16·3–37·2] per 100 000 population). Globally, life expectancy steadily improved between 1990 and 2019 for 18 of the 22 investigated causes. Decomposition of global and regional life expectancy showed the positive effect that reductions in deaths from enteric infections, lower respiratory infections, stroke, and neonatal deaths, among others have contributed to improved survival over the study period. However, a net reduction of 1·6 years occurred in global life expectancy between 2019 and 2021, primarily due to increased death rates from COVID-19 and other pandemic-related mortality. Life expectancy was highly variable between super-regions over the study period, with southeast Asia, east Asia, and Oceania gaining 8·3 years (6·7–9·9) overall, while having the smallest reduction in life expectancy due to COVID-19 (0·4 years). The largest reduction in life expectancy due to COVID-19 occurred in Latin America and the Caribbean (3·6 years). Additionally, 53 of the 288 causes of death were highly concentrated in locations with less than 50% of the global population as of 2021, and these causes of death became progressively more concentrated since 1990, when only 44 causes showed this pattern. The concentration phenomenon is discussed heuristically with respect to enteric and lower respiratory infections, malaria, HIV/AIDS, neonatal disorders, tuberculosis, and measles.InterpretationLong-standing gains in life expectancy and reductions in many of the leading causes of death have been disrupted by the COVID-19 pandemic, the adverse effects of which were spread unevenly among populations. Despite the pandemic, there has been continued progress in combatting several notable causes of death, leading to improved global life expectancy over the study period. Each of the seven GBD super-regions showed an overall improvement from 1990 and 2021, obscuring the negative effect in the years of the pandemic. Additionally, our findings regarding regional variation in causes of death driving increases in life expectancy hold clear policy utility. Analyses of shifting mortality trends reveal that several causes, once widespread globally, are now increasingly concentrated geographically. These changes in mortality concentration, alongside further investigation of changing risks, interventions, and relevant policy, present an important opportunity to deepen our understanding of mortality-reduction strategies. Examining patterns in mortality concentration might reveal areas where successful public health interventions have been implemented. Translating these successes to locations where certain causes of death remain entrenched can inform policies that work to improve life expectancy for people everywhere

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    No full text
    BackgroundEstimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period.Methods22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution.FindingsGlobal all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations.InterpretationGlobal adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic
    corecore