18 research outputs found
Three-dimensional CFD simulations with large displacement of the geometries using a connectivity-change moving mesh approach
This paper deals with three-dimensional (3D) numerical simulations involving 3D moving geometries with large displacements on unstructured meshes. Such simulations are of great value to industry, but remain very time-consuming. A robust moving mesh algorithm coupling an elasticity-like mesh deformation solution and mesh optimizations was proposed in previous works, which removes the need for global remeshing when performing large displacements. The optimizations, and in particular generalized edge/face swapping, preserve the initial quality of the mesh throughout the simulation. We propose to integrate an Arbitrary Lagrangian Eulerian compressible flow solver into this process to demonstrate its capabilities in a full CFD computation context. This solver relies on a local enforcement of the discrete geometric conservation law to preserve the order of accuracy of the time integration. The displacement of the geometries is either imposed, or driven by fluid–structure interaction (FSI). In the latter case, the six degrees of freedom approach for rigid bodies is considered. Finally, several 3D imposed-motion and FSI examples are given to validate the proposed approach, both in academic and industrial configurations
Background Light in Potential Sites for the ANTARES Undersea Neutrino Telescope
The ANTARES collaboration has performed a series of {\em in situ}
measurements to study the background light for a planned undersea neutrino
telescope. Such background can be caused by K decays or by biological
activity. We report on measurements at two sites in the Mediterranean Sea at
depths of 2400~m and 2700~m, respectively. Three photomultiplier tubes were
used to measure single counting rates and coincidence rates for pairs of tubes
at various distances. The background rate is seen to consist of three
components: a constant rate due to K decays, a continuum rate that
varies on a time scale of several hours simultaneously over distances up to at
least 40~m, and random bursts a few seconds long that are only correlated in
time over distances of the order of a meter. A trigger requiring coincidences
between nearby photomultiplier tubes should reduce the trigger rate for a
neutrino telescope to a manageable level with only a small loss in efficiency.Comment: 18 pages, 8 figures, accepted for publication in Astroparticle
Physic
Karst in granitic rocks, South Cameroon: cave genesis and silica and taranakite speleothems
A cave in granitic rocks was studied in Mezesse, South Cameroon. Coralloid speleothems, draperies and dissolution traces on the cave walls attest to its truly karstic nature. The speleothems consist of microlayers of opal and taranakite (K,NH4)Al3(PO4)3(OH).9H2O. They indicate a significant mobilization of silica, Al and K from granite during the formation of the cave. Identification of silicified bacteria in the speleothems layers suggests a possible role of these micro-organisms in silica deposition. The presence of taranakite and of silicified organic remains within the speleothems lead to a better understanding of the genesis of the cave
Management of Root Perforations Using MTA with or without Er:YAG Laser Irradiation: An In Vitro Study
The aim of this in vitro study is to compare the microleakage of a root perforation sealed with MTA (mineral trioxide aggregate) (group M) to that sealed with MTA following Er:YAG laser irradiation (group ML). Forty-two recently extracted human monoroot teeth were used. Two cavities were prepared on each root surface. Randomly, on each root, the exposed dentine of one cavity was irradiated prior to MTA filling using an Er:YAG laser with the following settings: 200 mJ/pulses under an air water spray, 10 Hz, pulse duration of 50 µsec, and 0.7 mm beam diameter. All cavities were then sealed with MTA. submitted to thermocycling and immersed in 2% methylene blue dye solution for 12 h. The penetration of methylene blue in the microleakage of cavity was observed and recorded. The mean value dye penetration in cavities sealed with MTA following Er:YAG laser irradiation (23.91 ± 14.63%) was lower than that of unlased cavities sealed only with MTA (25.17 ± 17.53%). No significant difference was noted. The use of an Er:YAG laser beam for dentinal conditioning prior to MTA filling of perforated roots did not decrease significantly the microleakage of MTA sealing when compared to the conventional use of MTA filling
Management of Root Perforations Using MTA with or without Er:YAG Laser Irradiation: An In Vitro Study
The aim of this in vitro study is to compare the microleakage of a root perforation sealed with MTA (mineral trioxide aggregate) (group M) to that sealed with MTA following Er:YAG laser irradiation (group ML). Forty-two recently extracted human monoroot teeth were used. Two cavities were prepared on each root surface. Randomly, on each root, the exposed dentine of one cavity was irradiated prior to MTA filling using an Er:YAG laser with the following settings: 200 mJ/pulses under an air water spray, 10 Hz, pulse duration of 50 μsec, and 0.7 mm beam diameter. All cavities were then sealed with MTA. submitted to thermocycling and immersed in 2% methylene blue dye solution for 12 h. The penetration of methylene blue in the microleakage of cavity was observed and recorded. The mean value dye penetration in cavities sealed with MTA following Er:YAG laser irradiation (23.91±14.63%) was lower than that of unlased cavities sealed only with MTA (25.17±17.53%). No significant difference was noted. The use of an Er:YAG laser beam for dentinal conditioning prior to MTA filling of perforated roots did not decrease significantly the microleakage of MTA sealing when compared to the conventional use of MTA filling
Comparison of microleakage of photo-cured composites using three different light sources: halogen lamp, LED and argon laser: an in vitro study
In this study, we compared the microleakage of composite fillings cured with halogen bulb, LED and argon ion laser (488 nm). Twenty-four extracted human molars were divided randomly in three groups. Six cavities were prepared on the coronal part of each tooth. Standard cavities (1.7 x 2 mm) were prepared. Cavities were acid etched, sealed with Scotch Bond 1 and filled by a hybrid composite. Cavities were exposed to one light source, thermocycled and immersed in a 2% methylene blue dye solution. Dye penetration in the leakage of cavities was recorded using a digital optical microscope. Mean values of percentage of dye penetrations in microleakages of cavities were 49.303 +/- 5.178% for cavities cured with LED, 44.486 +/- 6.075% with halogen bulb and 36.647 +/- 5.936% for those cured by argon laser. Statistically significant difference exists between cavities cured by halogen vs LED (P < 0.01), halogen vs laser (P < 0.001) and LED vs laser (P < 0.001). The lowest microleakage was observed in the cavities and composites cured with argon ion laser