12 research outputs found

    The Nature Index: A General Framework for Synthesizing Knowledge on the State of Biodiversity

    Get PDF
    The magnitude and urgency of the biodiversity crisis is widely recognized within scientific and political organizations. However, a lack of integrated measures for biodiversity has greatly constrained the national and international response to the biodiversity crisis. Thus, integrated biodiversity indexes will greatly facilitate information transfer from science toward other areas of human society. The Nature Index framework samples scientific information on biodiversity from a variety of sources, synthesizes this information, and then transmits it in a simplified form to environmental managers, policymakers, and the public. The Nature Index optimizes information use by incorporating expert judgment, monitoring-based estimates, and model-based estimates. The index relies on a network of scientific experts, each of whom is responsible for one or more biodiversity indicators. The resulting set of indicators is supposed to represent the best available knowledge on the state of biodiversity and ecosystems in any given area. The value of each indicator is scaled relative to a reference state, i.e., a predicted value assessed by each expert for a hypothetical undisturbed or sustainably managed ecosystem. Scaled indicator values can be aggregated or disaggregated over different axes representing spatiotemporal dimensions or thematic groups. A range of scaling models can be applied to allow for different ways of interpreting the reference states, e.g., optimal situations or minimum sustainable levels. Statistical testing for differences in space or time can be implemented using Monte-Carlo simulations. This study presents the Nature Index framework and details its implementation in Norway. The results suggest that the framework is a functional, efficient, and pragmatic approach for gathering and synthesizing scientific knowledge on the state of biodiversity in any marine or terrestrial ecosystem and has general applicability worldwide

    Comparative Transcriptional and Genomic Analysis of Plasmodium falciparum Field Isolates

    Get PDF
    Mechanisms for differential regulation of gene expression may underlie much of the phenotypic variation and adaptability of malaria parasites. Here we describe transcriptional variation among culture-adapted field isolates of Plasmodium falciparum, the species responsible for most malarial disease. It was found that genes coding for parasite protein export into the red cell cytosol and onto its surface, and genes coding for sexual stage proteins involved in parasite transmission are up-regulated in field isolates compared with long-term laboratory isolates. Much of this variability was associated with the loss of small or large chromosomal segments, or other forms of gene copy number variation that are prevalent in the P. falciparum genome (copy number variants, CNVs). Expression levels of genes inside these segments were correlated to that of genes outside and adjacent to the segment boundaries, and this association declined with distance from the CNV boundary. This observation could not be explained by copy number variation in these adjacent genes. This suggests a local-acting regulatory role for CNVs in transcription of neighboring genes and helps explain the chromosomal clustering that we observed here. Transcriptional co-regulation of physical clusters of adaptive genes may provide a way for the parasite to readily adapt to its highly heterogeneous and strongly selective environment

    Achiote (Bixa orellana L.) : a natural source of pigment and vitamin E

    No full text
    Commercialization of agricultural products, including seeds and its derived products, represents an important economic source for developing countries. Natural colorants obtained from the seeds of achiote plant (annatto) have been used since pre-Hispanic times. Also, production of this crop has been important for Mayan cuisine. Annual world production of achiote seeds is approximately 14,500 tons (dry weight). Two thirds of the production is commercialized as dried seeds and the rest as colorant. Latin America produces 60% of the total world production, followed by Africa (27%) and Asia (12%). The main producers in Latin America are Peru, Brazil and Mexico. The purpose of the present paper is to review the most recent literature on Bixa orellana L. focusing on bixin, norbixin, tocotrienols and tocopherols biosynthesis, use and industrial applications of annatto extracts, as well as its nutraceutical potential and its benefits for human health.Instituto de BiotecnologíaFil: Raddatz-Mota, Denise. Universidad Autónoma Metropolitana-Iztapalapa. Departamento de Ciencias de la Salud; MéxicoFil: Pérez Flores, Laura J. Universidad Autónoma Metropolitana-Iztapalapa. Departamento de Ciencias de la Salud; MéxicoFil: Carrari, Fernando. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Mendoza-Espinoza, José Alberto. Universidad Autónoma de la Ciudad de México. Departamento de Biología Humana; MéxicoFil: Díaz de León-Sánchez, Fernando. Universidad Autónoma Metropolitana-Iztapalapa. Departamento de Ciencias de la Salud; MéxicoFil: Pinzón-López, Luis L. Instituto Tecnológico de Conkal; MéxicoFil: Godoy-Hernández, Gregorio. Centro de Investigación Científica de Yucatán. Unidad de Bioquímica y Biología Molecular de Plantas; MéxicoFil: Rivera Cabrera, Fernando. Universidad Autónoma Metropolitana-Iztapalapa. Departamento de Ciencias de la Salud; Méxic

    COVID-19 in Patients with Pulmonary Hypertension A National Prospective Cohort Study

    No full text
    RATIONALE: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with pulmonary endothelial dysfunction. There are limited data available on the outcomes of coronavirus disease (COVID-19) in patients with pulmonary hypertension (PH), a disease characterized by pulmonary endothelial dysfunction. OBJECTIVES: To describe characteristics and outcomes of patients with precapillary PH and COVID-19. METHODS: We prospectively collected characteristics, management, and outcomes of adult patients with precapillary PH in the French PH network who had COVID-19 between February 1, 2020, and April 30, 2021. Clinical, functional, and hemodynamic characteristics of PH before COVID-19 were collected from the French PH registry. MEASUREMENTS AND MAIN RESULTS: A total of 211 patients with PH (including 123 with pulmonary arterial hypertension, 47 with chronic thromboembolic PH, and 41 with other types of PH) experienced COVID-19, and 40.3% of them were outpatients, 32.2% were hospitalized in a conventional ward, and 27.5% were in an ICU. Among hospitalized patients (n = 126), 54.0% received corticosteroids, 37.3% high-flow oxygen, and 11.1% invasive ventilation. Right ventricular and acute renal failure occurred in 30.2% and 19.8% of patients, respectively. Fifty-two patients (all hospitalized) died from COVID-19. Overall mortality was 24.6% (95% CI [confidence interval], 18.8-30.5) and in-hospital mortality 41.3% (95% CI, 32.7-49.9). Nonsurvivors were significantly older, more frequently male and suffering comorbidities (diabetes, chronic respiratory diseases, systemic hypertension, chronic cardiac diseases, and/or chronic renal failure), and had more severe PH at their most recent evaluation preceding COVID-19 diagnosis (in terms of functional class and 6-minute-walk distance; all P, 0.05). Use of pulmonary arterial hypertension therapy was similar between survivors and nonsurvivors. CONCLUSIONS: COVID-19 in patients with precapillary PH was associated with a high in-hospital mortality. The typical risk factors for severe COVID-19 and severity of PH were associated with mortality in this population

    Oil Vulnerability Index, Impact on Arctic Bird Populations (Proposing a Method for Calculating an Oil Vulnerability Index for the Arctic Seabirds)

    No full text
    In recent decades, political and commercial interest in the Arctic’s resources has increased dramatically. With the projected increase in shipping activity and hydrocarbon extraction, there is an increased risk to marine habitats and organisms. This comes with concomitant threats to the fragile Arctic environment especially from oil, whether from shipping accidents, pipeline leaks, or sub-surface well blowouts. Seabirds are among the most threatened group of birds, and the main threats to these species at-sea are commercial fishing and pollution. Seabirds are vulnerable to oil pollution, which can result in mass mortality events. Species are affected to a differing extent, therefore it is important to objectively predict which species are most at risk from oil spills and where. Assessing the vulnerability of seabirds to oil is achieved through establishing an index for the sensitivity of seabirds to oil – Oil Vulnerability Index (OVI). This incorporates spatial information on the distribution and density of birds as well as on species specific behaviours and other life history characteristics. This chapter focuses on the threat of oil to seabirds, especially in the Arctic, and how an OVI can be used to highlight which species are most at risk and where within the Arctic region.© Springer Nature Switzerland AG 2020. The attached file is the final accepted manuscript version
    corecore