90 research outputs found

    Anomalous power law of quantum reversibility for classically regular dynamics

    Get PDF
    The Loschmidt Echo M(t) (defined as the squared overlap of wave packets evolving with two slightly different Hamiltonians) is a measure of quantum reversibility. We investigate its behavior for classically quasi-integrable systems. A dominant regime emerges where M(t) ~ t^{-alpha} with alpha=3d/2 depending solely on the dimension d of the system. This power law decay is faster than the result ~ t^{-d} for the decay of classical phase space densities

    Decay of the classical Loschmidt echo in integrable systems

    Full text link
    We study both analytically and numerically the decay of fidelity of classical motion for integrable systems. We find that the decay can exhibit two qualitatively different behaviors, namely an algebraic decay, that is due to the perturbation of the shape of the tori, or a ballistic decay, that is associated with perturbing the frequencies of the tori. The type of decay depends on initial conditions and on the shape of the perturbation but, for small enough perturbations, not on its size. We demonstrate numerically this general behavior for the cases of the twist map, the rectangular billiard, and the kicked rotor in the almost integrable regime.Comment: 8 pages, 3 figures, revte

    Universality of the Lyapunov regime for the Loschmidt echo

    Full text link
    The Loschmidt echo (LE) is a magnitude that measures the sensitivity of quantum dynamics to perturbations in the Hamiltonian. For a certain regime of the parameters, the LE decays exponentially with a rate given by the Lyapunov exponent of the underlying classically chaotic system. We develop a semiclassical theory, supported by numerical results in a Lorentz gas model, which allows us to establish and characterize the universality of this Lyapunov regime. In particular, the universality is evidenced by the semiclassical limit of the Fermi wavelength going to zero, the behavior for times longer than Ehrenfest time, the insensitivity with respect to the form of the perturbation and the behavior of individual (non-averaged) initial conditions. Finally, by elaborating a semiclassical approximation to the Wigner function, we are able to distinguish between classical and quantum origin for the different terms of the LE. This approach renders an understanding for the persistence of the Lyapunov regime after the Ehrenfest time, as well as a reinterpretation of our results in terms of the quantum--classical transition.Comment: 33 pages, 17 figures, uses Revtex

    The approach to thermal equilibrium in quantized chaotic systems

    Full text link
    We consider many-body quantum systems that exhibit quantum chaos, in the sense that the observables of interest act on energy eigenstates like banded random matrices. We study the time-dependent expectation values of these observables, assuming that the system is in a definite (but arbitrary) pure quantum state. We induce a probability distribution for the expectation values by treating the zero of time as a uniformly distributed random variable. We show explicitly that if an observable has a nonequilibrium expectation value at some particular moment, then it is overwhelmingly likely to move towards equilibrium, both forwards and backwards in time. For deviations from equilibrium that are not much larger than a typical quantum or thermal fluctuation, we find that the time dependence of the move towards equilibrium is given by the Kubo correlation function, in agreement with Onsager's postulate. These results are independent of the details of the system's quantum state.Comment: 15 pages, no figures; some arguments are clarified in the revised versio

    LiBAT: A High-Performance AC Battery System for Transport Applications

    Get PDF
    The paper proposes a novel battery design for high-performance transport applications that is immersion-cooled and switched by a multi-level inverter. Advantages of the proposed AC battery design in terms of weight, modularity, scalability, performance, reliability and safety are presented. To demonstrate the applicability of the design, an electrically powered glider use case is addressed. The derived battery system is evaluated by means of theoretical analysis, simulation and prototyping. Simulations showed that the used multi-level inverter (MLI) power electronics modules could successfully run the motor without additional power electronics and charge batteries from a 110 V AC source. The prototype implementation with a motor-driven propeller demonstrated power levels of up to 3.3 kW, with a behavior in accordance with simulations. Guidelines to further advance the technology readiness level including control strategies and hardware design were derived to overcome limitations in the prototype realization that could not be addressed within the project budget. Finally, research topics to evaluate additional performance metrics such as efficiency and aging behavior are suggested

    Microcalcifications in breast cancer: novel insights into the molecular mechanism and functional consequence of mammary mineralisation.

    Get PDF
    BACKGROUND: Mammographic microcalcifications represent one of the most reliable features of nonpalpable breast cancer yet remain largely unexplored and poorly understood. METHODS: We report a novel model to investigate the in vitro mineralisation potential of a panel of mammary cell lines. Primary mammary tumours were produced by implanting tumourigenic cells into the mammary fat pads of female BALB/c mice. RESULTS: Hydroxyapatite (HA) was deposited only by the tumourigenic cell lines, indicating mineralisation potential may be associated with cell phenotype in this in vitro model. We propose a mechanism for mammary mineralisation, which suggests that the balance between enhancers and inhibitors of physiological mineralisation are disrupted. Inhibition of alkaline phosphatase and phosphate transport prevented mineralisation, demonstrating that mineralisation is an active cell-mediated process. Hydroxyapatite was found to enhance in vitro tumour cell migration, while calcium oxalate had no effect, highlighting potential consequences of calcium deposition. In addition, HA was also deposited in primary mammary tumours produced by implanting the tumourigenic cells into the mammary fat pads of female BALB/c mice. CONCLUSION: This work indicates that formation of mammary HA is a cell-specific regulated process, which creates an osteomimetic niche potentially enhancing breast tumour progression. Our findings point to the cells mineralisation potential and the microenvironment regulating it, as a significant feature of breast tumour development

    Glycosaminoglycans and Sialylated Glycans Sequentially Facilitate Merkel Cell Polyomavirus Infectious Entry

    Get PDF
    Merkel cell polyomavirus (MCV or MCPyV) appears to be a causal factor in the development of Merkel cell carcinoma, a rare but highly lethal form of skin cancer. Although recent reports indicate that MCV virions are commonly shed from apparently healthy human skin, the precise cellular tropism of the virus in healthy subjects remains unclear. To begin to explore this question, we set out to identify the cellular receptors or co-receptors required for the infectious entry of MCV. Although several previously studied polyomavirus species have been shown to bind to cell surface sialic acid residues associated with glycolipids or glycoproteins, we found that sialylated glycans are not required for initial attachment of MCV virions to cultured human cell lines. Instead, glycosaminoglycans (GAGs), such as heparan sulfate (HS) and chondroitin sulfate (CS), serve as initial attachment receptors during the MCV infectious entry process. Using cell lines deficient in GAG biosynthesis, we found that N-sulfated and/or 6-O-sulfated forms of HS mediate infectious entry of MCV reporter vectors, while CS appears to be dispensable. Intriguingly, although cell lines deficient in sialylated glycans readily bind MCV capsids, the cells are highly resistant to MCV reporter vector-mediated gene transduction. This suggests that sialylated glycans play a post-attachment role in the infectious entry process. Results observed using MCV reporter vectors were confirmed using a novel system for infectious propagation of native MCV virions. Taken together, the findings suggest a model in which MCV infectious entry occurs via initial cell binding mediated primarily by HS, followed by secondary interactions with a sialylated entry co-factor. The study should facilitate the development of inhibitors of MCV infection and help shed light on the infectious entry pathways and cellular tropism of the virus

    Re-examining the Unified Theory of Acceptance and Use of Technology (UTAUT): Towards a Revised Theoretical Model

    Get PDF
    YesBased on a critical review of the Unified Theory of Acceptance and Use of Technology (UTAUT), this study first formalized an alternative theoretical model for explaining the acceptance and use of information system (IS) and information technology (IT) innovations. The revised theoretical model was then empirically examined using a combination of meta-analysis and structural equation modelling (MASEM) techniques. The meta-analysis was based on 1600 observations on 21 relationships coded from 162 prior studies on IS/IT acceptance and use. The SEM analysis showed that attitude: was central to behavioural intentions and usage behaviours, partially mediated the effects of exogenous constructs on behavioural intentions, and had a direct influence on usage behaviours. A number of implications for theory and practice are derived based on the findings

    Integrating genetics and epigenetics in breast cancer: biological insights, experimental, computational methods and therapeutic potential

    Get PDF
    corecore