4,226 research outputs found

    Bright tripartite entanglement in triply concurrent parametric oscillation

    Get PDF
    We show that a novel optical parametric oscillator, based on concurrent χ(2)\chi^{(2)} nonlinearities, can produce, above threshold, bright output beams of macroscopic intensities which exhibit strong tripartite continuous-variable entanglement. We also show that there are {\em two} ways that the system can exhibit a new three-mode form of the Einstein-Podolsky-Rosen paradox, and calculate the extra-cavity fluctuation spectra that may be measured to verify our predictions.Comment: title change, expanded intro and discussion of experimental aspects, 1 new figure. Conclusions unaltere

    Quantifying Equivocation for Finite Blocklength Wiretap Codes

    Full text link
    This paper presents a new technique for providing the analysis and comparison of wiretap codes in the small blocklength regime over the binary erasure wiretap channel. A major result is the development of Monte Carlo strategies for quantifying a code's equivocation, which mirrors techniques used to analyze normal error correcting codes. For this paper, we limit our analysis to coset-based wiretap codes, and make several comparisons of different code families at small and medium blocklengths. Our results indicate that there are security advantages to using specific codes when using small to medium blocklengths.Comment: Submitted to ICC 201

    Assessment of Water Quality and Soil Sequestration to Ensure Environmental Quality at Georgia Southern University Campus

    Get PDF
    Assessment of Water Quality and Soil Sequestration to Ensure Environmental Quality at Georgia Southern University Campus Dr. Arpita Saha (PI), Dr. Subhrajit Saha (Co-PI), and Matthew Pfister (Co-PI) The proposed project has two parts, first part involves analysis of campus surface water quality and the second part involves measurement of campus soil carbon storage. The storm water runoff from off-campus and on-campus sources has the potential to pollute the campus water bodies and the findings of our study will recommend remedial strategies, which may help authorities to take necessary actions. The campus soil carbon distribution was inventoried and the factors (land use, management) supporting soil C stocking will be identified and recommended to help authorities promote climate change mitigation and adaptation strategies on campus

    Context-guided Diffusion for Label Propagation on Graphs

    Get PDF
    Existing approaches for diffusion on graphs, e.g., for label propagation, are mainly focused on isotropic diffusion, which is induced by the commonly-used graph Laplacian regularizer. Inspired by the success of diffusivity tensors for anisotropic diffusion in image processing, we presents anisotropic diffusion on graphs and the corresponding label propagation algorithm. We develop positive definite diffusivity operators on the vector bundles of Riemannian manifolds, and discretize them to diffusivity operators on graphs. This enables us to easily define new robust diffusivity operators which significantly improve semi-supervised learning performance over existing diffusion algorithms

    Applications of the ER-2 meteorological measurement system

    Get PDF
    The NASA ER-2 aircraft is used as a platform for high altitude atmospheric missions. The Meteorological Measurement System (MMS) was developed specifically for atmospheric research to provide accurate high resolution measurements of pressure, temperature, and the 3-D wind vector with a sampling rate of 5/s. The MMS consist of three subsystems: (1) an air motion sensing system to measure the velocity of the air with respect to the aircraft; (2) a high resolution inertial navigation system (INS) to measure the velocity of the aircraft with respect to the earth; and (3) a data acquisition system to sample, process, and record the measurement quantities. MMS data have been used extensively by ER-2 investigators in elucidating the polar ozone chemistry. Herein, applications on atmospheric dynamics are emphasized. Large scale (polar vortex, potential vorticity, model atmosphere), mesoscale (gravity waves, mountain waves) and microscale (heat fluxes) atmospheric phenomena are investigated and discussed

    Lebowitz Inequalities for Ashkin-Teller Systems

    Full text link
    We consider the Ashkin-Teller model with negative four-spin coupling but still in the region where the ground state is ferromagnetic. We establish the standard Lebowitz inequality as well as the extension that is necessary to prove a divergent susceptibility.Comment: Ams-TeX, 12 pages; two references added, final version accepted for publication in Physica

    Source integrals of asymptotic multipole moments

    Full text link
    We derive source integrals for multipole moments that describe the behaviour of static and axially symmetric spacetimes close to spatial infinity. We assume isolated non-singular sources but will not restrict the matter content otherwise. Some future applications of these source integrals of the asymptotic multipole moments are outlined as well.Comment: 9 pages, 1 figure, contribution to the proceedings of the conference "Relativity and Gravitation - 100 Years after Einstein in Prague", June 25-29, 2012, Pragu

    Thermal Submeso Motions in the Nocturnal Stable Boundary Layer. Part 2: Generating Mechanisms and Implications

    Get PDF
    In the stable boundary layer, thermal submesofronts (TSFs) are detected during the Shallow Cold Pool experiment in the Colorado plains, Colorado, USA in 2012. The topography induces TSFs by forming two different air layers converging on the valley-side wall while being stacked vertically above the valley bottom. The warm-air layer is mechanically generated by lee turbulence that consistently elevates near-surface temperatures, while the cold-air layer is thermodynamically driven by radiative cooling and the corresponding cold-air drainage decreases near-surface temperatures. The semi-stationary TSFs can only be detected, tracked, and investigated in detail when using fibre-optic distributed sensing (FODS), as point observations miss TSFs most of the time. Neither the occurrence of TSFs nor the characteristics of each air layer are connected to a specific wind or thermal regime. However, each air layer is characterized by a specific relationship between the wind speed and the friction velocity. Accordingly, a single threshold separating different flow regimes within the boundary layer is an oversimplification, especially during the occurrence of TSFs. No local forcings or their combination could predict the occurrence of TSFs except that they are less likely to occur during stronger near-surface or synoptic-scale flow. While classical conceptualizations and techniques of the boundary layer fail in describing the formation of TSFs, the use of spatially continuous data obtained from FODS provide new insights. Future studies need to incorporate spatially continuous data in the horizontal and vertical planes, in addition to classic sensor networks of sonic anemometry and thermohygrometers to fully characterize and describe boundary-layer phenomena
    corecore