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We show that an optical parametric oscillator based on three concurrent ��2� nonlinearities can produce,
above threshold, bright output beams of macroscopic intensities which exhibit strong tripartite continuous-
variable entanglement. We also show that there are two ways that the system can exhibit a three-mode form of
the Einstein-Podolsky-Rosen paradox, and calculate the extracavity fluctuation spectra that may be measured to
verify our predictions.
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Entanglement is a central property of quantum mechanics.
In particular, continuous-variable �CV� entanglement is at
the core of the Einstein-Podolsky-Rosen �EPR� paradox �1�
and is also important for quantum teleportation, quantum in-
formation, and quantum cryptography �2,3�. Bipartite en-
tanglement is now readily producible experimentally, and
there has been some progress in the production of tripartite
entangled beams, where entanglement was obtained by mix-
ing squeezed vacua with linear optical elements �4,5�. In our
proposal, strong entanglement is created in the nonlinear in-
teraction itself and, as we will demonstrate, is present above
the operating threshold, where the entangled outputs are
macroscopically bright beams. We confirm that the output
fields satisfy criteria for measurable CV tripartite entangle-
ment �6� and derive two types of experimental EPR �1� cri-
teria which are applicable to this system. We then show ana-
lytically and numerically that the proposed system
demonstrates these properties, both above and below thresh-
old. Note that the tripartite CV entangled state thus created
tends toward a Greenberger-Horne-Zeilinger �GHZ� state in
the limit of infinite squeezing, but is analogous to a W state
for finite squeezing �7�.

It is worthwhile to discuss the relation of the multipartite
CV entangler studied in this paper to the multipartite CV
entangler proposed by van Loock and Braunstein �4� and
realized recently �5�. The latter is comprised of N squeezers
�some of which may be replaced by vacuum inputs if non-
maximal entanglement is acceptable� and an N-input-port in-
terferometer. The experiment therefore requires stabilization
of the frequencies and output powers of N optical parametric
oscillators �OPOs�, as well as of the N optical paths of the
interferometer. In contrast, our system is based on a single
OPO pumped by a frequency comb �which can be easily
provided by a single cw laser, frequency or amplitude modu-
lated, or by a single, stable, pulsed laser� and there is no
interferometer at the output. However, the nonlinear medium
inside the OPO must provide what we have named concur-
rent nonlinear interactions, i.e., simultaneously phase-
matched three-field mixings where each field produced
comes from two or more of the nonlinear processes �Fig. 1�.

For example, the Hamiltonian

Ĥ = i���ab̂12â1
†â2

† + �bb̂23â2
†â3

†� + H.c., �1�

where the b̂ij denote the pump fields, describes a concur-
rence, even though the multipartite entanglement available
from this interaction is not very strong �8,9�. If â2

† and â2 are
swapped in the second term �10–12�, the available tripartite
entanglement increases a little, although it is still not as

FIG. 1. Graphical representation of multipartite CV entanglers
for N=5. Each dot represents a cavity field mode and the lines
represent their respective nonlinear couplings. The solid lines in a
graph represent, indifferently, all down-or all up-converting nonlin-
ear interactions; the dashed lines then represent the interactions op-
posite to the solid line ones, i.e., all up-or down-converting, respec-
tively. �a� Ideal concurrence yields maximal �GHZ� entanglement in
the limit of infinite squeezing. �b� van Loock and Braunstein’s ideal
case yields maximal �GHZ� entanglement in the limit of infinite
squeezing. �c� Nonideal concurrence due to an incomplete set of
interactions. �d� Nonideal concurrence due to an undesirable degen-
erate interaction of the same kind as the nondegenerate ones. �e�
Nonideal concurrence due to a “leaking” interaction. In �c�–�e�,
entanglement becomes significantly nonmaximal.
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strong as for the system we analyze in the present work. In
the graphical representation of Fig. 1, the case of Eq. �1�
corresponds to three vertices connected by only two edges,
i.e., an incomplete triangle, analogous to Fig. 1�c�.

In the general case, the following concurrence generates a
set of N entangled modes a1,. . .,N �8�:

Ĥ�N� = i���
i=1

N

�
j�i

b̂ijâi
†âj

† + H.c., �2�

where we have taken all nonlinear coupling constants equal

to � for simplicity. The pump fields b̂ij were assumed to be
classical undepleted fields in Ref. �8�, whereas they will be
quantized in the present analysis. The analysis of Refs. �8,14�
shows that the Hamiltonian Ĥ�N� leads to perfect multipartite
entanglement and corresponds to Fig. 1�a�. However, one
must �i� have all possible pair couplings, �ii� avoid all cou-
plings outside the set of N entangled modes, and �iii� care-
fully suppress all degenerate interactions �i.e., terms of the

form b̂i+k,i−kâi
2†� since just a few of these destroy entangle-

ment very quickly. Examples of such undesirable configura-
tions are given in Figs. 1�c�–1�e�. Their quantitative effects
are presently under study and we intend to publish the results
elsewhere �14�.

It is important to note that degenerate interactions do not
destroy entanglement if they have the opposite effect from
the nondegenerate ones, i.e., up-converting if the nondegen-
erate ones are down-converting, or vice versa. This is ex-
pressed in the Hamiltonian by opposite signs for the nonde-
generate and degenerate terms �8� and, in Fig. 1, by solid and
dashed lines, respectively. In this case, if all possible degen-
erate interactions are present with equal coupling strength
�Fig. 1�b��, then the situation becomes exactly that of the van
Loock and Braunstein proposal �8�. This is, however, clearly
impossible to implement in a single OPO and all degenerate
interactions must therefore be suppressed in our proposal.

In the absence of any degenerate interaction, the relative
signs between nondegenerate Hamiltonian terms do not nec-
essarily decrease the amount of entanglement, even though
they do change the particular entangled state that is created.

For example, for N=3, The Hamiltonian Ĥ�3� �2�, with clas-
sical and equal pumps, is

Ĥ�3� = i���â1
†â2

† + â2
†â3

† + â3
†â1

†� + H.c. �3�

and admits eigenstates of the following �unnormalized� form,
in the amplitude quadrature basis:

���3�� =� �x�1�x�2�x�3dx . �4�

When one sign is changed in Ĥ�3�, for example,

Ĥ�3�� = i���− â1
†â2

† + â2
†â3

† + â3
†â1

†� + H.c., �5�

the eigenstate becomes of the form

���3�� � =� �p�1�p�2�− p�3dp , �6�

which is a state orthogonal to ��3� but still maximally en-
tangled. Another example is

Ĥ�3�� = i���− â1
†â2

† − â2
†â3

† + â3
†â1

†� + H.c., �7�

���3�� � =� �x�1�− x�2�x�3dx . �8�

It is thus easy to see that no entanglement is lost with sign
changes for nondegenerate interactions between three modes.
It is reasonable to assume it might still be the case for N
�3 but we have not yet investigated this more general situ-
ation.

Finally, an important fundamental point is that, as recently
shown by Braunstein �17�, there exists a formal mathemati-
cal connection between our entangler and that of van Loock
and Braunstein: a linear algebraic transformation called the
Bloch-Messiah reduction projects our system onto theirs. �In
technical terms, the Bloch-Messiah reduction is a particular
case of singular-value decomposition of the Bogoliubov
transformation matrix of the system.�

The ideal concurrences of Fig. 1�a� would be extremely
difficult to obtain using birefringently phase-matched nonlin-
ear optics; however, the advent of quasi-phase-matching has
radically changed this situation, as explained in Ref. �8�, and
an experimental demonstration of three simultaneous nonlin-
ear interactions, involving the same set of wavelengths in the
same nonlinear crystal, has recently been achieved �13�. A

concrete and natural way of implementing Ĥ�N� experimen-
tally is to have the entangled mode labels i , j correspond to
the eigenfrequencies of an optical resonator, such as the reso-
nant cavity of an OPO. In that case, additional mode quan-
tum numbers are provided by the optical polarization, a two-
dimensional eigenspace. It is then possible to experimentally
design quasi-phase-matched concurrences for closed sets of
modes, up to N=4, using setups such as the one described
below. �See Refs. �8,13� for the experimental details.� These
setups are free of any additional terms deleterious to en-
tanglement. In order to achieve scaling of entanglement to a
larger number N�4 of modes �15�, it appears mandatory to
use a higher-dimensional quantum number than in polariza-
tion. The angular momentum of light created in Laguerre-
Gaussian beams �16� might be an interesting possibility to
explore.

We now describe the experimental system analyzed in
detail in this paper. A schematic of our system is given in
Fig. 2, showing the three quasi-phase-matched pump inputs,
which interact with the crystal to produce three output beams
at frequencies �0, �1, and �2, with the interactions selected
to couple distinct polarizations. Mode 1 is pumped at fre-
quency and polarization ��0+�1 ,y� to produce modes 4
��0 ,z� and 5 ��1 ,y�, mode 2 is pumped at ��1+�2 ,y� to
produce modes 5 and 6 ��2 ,z�, while mode 3 is pumped at
�2�1 ,z� to produce modes 6 and 4. Note that x is the axis of
propagation within the crystal.
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It is important to note that no other interaction involving
the three output modes is phase matched in this system. Let
us briefly confirm the feasibility of this scheme. First, it is
easy to satisfy the cavity resonance conditions for such a
closed set of three coupled modes, the problem being similar
to the well-known doubly resonant type-II OPO. Second,
type-I cluster instabilities, which are expected above thresh-
old for the zzz interaction, can be avoided by making the
frequencies different enough for dispersion to be significant
in the nonlinear medium, or by adding a mode filter inside
the cavity. We will now turn to the full quantum analysis of
the concurrence-based OPO, below and above threshold.

The Hamiltonian for the six-mode system is

Ĥtot = Ĥfree + Ĥpump + Ĥint + Ĥdamp, �9�

where the rotating-frame interaction Hamiltonian is

Ĥint = i���1â1â4
†â5

† + �2â2â5
†â6

† + �3â3â6
†â4

†� + H.c., �10�

where the � j represent the effective nonlinear couplings, and
the free and damping Hamiltonians have their usual forms.
The external pump fields �but not the intracavity ones� are
treated as classical. Note that the analysis of Ref. �8�, in

contrast, was limited to Ĥint with all pump modes being clas-
sical and no cavity whatsoever. Its conclusions were there-
fore applicable only to the optical parametric amplifier case,
not to the OPO above threshold, one of the situations treated
here. Following the usual route �18� we obtain the master
equation

��̂

�t
= −

i

�
�Ĥpump + Ĥint, �̂� + �

j=1

6

� jD j��̂� �11�

where the Lindblad superoperator D j��̂�	2âj�̂âj
†− âj

†âj�̂
− �̂âj

†âj is obtained by tracing over the density matrix for the
usual zero-temperature Markovian reservoirs. We assume
that all intracavity modes are resonant with the cavity, al-
though detuning can easily be added. We will treat all of the
high- �low-�frequency modes as having the same cavity loss
rate ����. In what follows we set �1=�2=�3=� and �4=�5

=�6=�, noting that the ��2� down-conversion efficiencies are
not necessarily identical �8�.

We now map the master equation onto a Fokker-Planck
equation for the positive-P function �19�. Note that we must
use the doubled phase space of the positive P in order to
ensure positive semidefinite diffusion. We can then establish
a correspondence between stochastic amplitudes 	 j �and 	 j

+�

and mode operators âj �and âj
†� respectively, 	 j and 	 j

+ being
independent complex variables. The full quantum dynamics
of the system can now be found by solving the Itô stochastic
differential equations

d	1 = �− �	1 + E1 − �1	4	5�dt ,

d	2 = �− �	2 + E2 − �2	5	6�dt ,

d	3 = �− �	3 + E3 − �3	4	6�dt ,

d	4 = �− �	4 + �1	1	5
+ + �3	3	6

+�dt + 
�1	1dW1�t�

+ 
�3	3dW3�t� ,

d	5 = �− �	5 + �1	1	4
+ + �2	2	6

+�dt + 
�2	2dW2�t�

+ 
�1	1dW1
*�t� ,

d	6 = �− �	6 + �2	2	5
+ + �3	3	4

+�dt + 
�2	2dW2
*�t�

+ 
�3	3dW3
*�t� , �12�

and also the equations obtained by interchange of 	 j with 	 j
+,

and dWj�t� with dWj+3�t�. The six independent Gaussian
complex noises are completely determined by their nonvan-
ishing correlator

dWi
*�t�dWj�t�� = 
ij
�t − t��dt . �13�

Defining the vector �= �	1 ,	1
+ ,	2 ,	2

+ , . . . ,	6 ,	6
+�T, we de-

termine the stability of the system by linearizing the equa-
tions about their semiclassical steady-state solutions �de-
noted by �̄�. We first drop the noise terms in Eq. �12�, so that
	 j

+→	 j
* and solve for the steady-state solutions. The linear-

ized equations for the fluctuations about the steady state
��=�− �̄ then form a multivariate Ornstein-Uhlenbeck pro-
cess �20�. The resulting matrix equation is

d�� = Ā�� dt + B̄dW , �14�

where dW is a vector of independent real noises, B̄ is the
noise matrix of Eq. �12� with the steady-state values inserted,
and

Ā = � A1 − A2

�A2
*�T A3

� , �15�

where A1=−�I6,

A2 = 
�1	̄5 0 �1	̄4 0 0 0

0 �1	̄5
* 0 �1	̄4

* 0 0

0 0 �2	̄6 0 �2	̄5 0

0 0 0 �2	̄6
* 0 �2	̄5

*

�3	̄6 0 0 0 �3	̄4 0

0 �3	̄6
* 0 0 0 �3	̄4

*

� , �16�

and

FIG. 2. Schematic of the experimental setup. Pump lasers drive
three modes �denoted by dots, squares, and circles�, with suitable
frequencies and polarizations, which are down-converted to three
other output modes by the crystal. Note that the physical beams will
overlap in the crystal, the separation being intended here for clarity.
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A3 = 
− � 0 0 �1	̄1 0 �3	̄3

0 − � �1	̄1
* 0 �3	̄3

* 0

0 �1	̄1 − � 0 0 �2	̄2

�1	̄1
* 0 0 − � �2	̄2

* 0

0 �3	̄3 0 �2	̄2 − � 0

�3	̄3
* 0 �2	̄2

* 0 0 − �

� . �17�

For simplicity in what follows, we will assume that all the
nonlinearities are equal, i.e., � j 	�. This can be achieved via
quasi-phase-matched interactions in periodically poled ferro-
electrics �8�, and means that we may set the effective cou-
pling rates equal by equating the pump field amplitudes Ej
	E.

If we treat all the pump fields as real, all the signal fields
are also real since the fields must satisfy the phase condition
�4+�5=�4+�6=�5+�6=0. As with the standard optical
parametric oscillator there is an oscillation threshold, which
for this system occurs at the pump field strength

Eth = ��/2� , �18�

below which the stable solutions are

	̄�1,2,3� = E/�, 	̄�4,5,6� = 0. �19�

At the threshold the fluctuations are not damped and there-
fore a linear fluctuation analysis is not valid. If the pumping
is increased further, modes 4, 5, and 6 become macroscopi-
cally occupied, while the high-frequency modes saturate at
their threshold value. There is also a relationship between the
driving fields that must be satisfied to have a steady state,
which in the case of equal nonlinearities means that all the
pump amplitudes must be equal and hence all the signal
amplitudes are equal �21�. The resulting steady-state solu-
tions

	̄�1,2,3� = �/2�, 	̄�4,5,6� = 
�E − Eth�/� �20�

enable us to investigate the quantum correlations of the sys-
tem by studying fluctuations around the steady state, from
which we will also find the measurable extracavity fluctua-
tion spectra �20�.

We will first describe the measurable quantities which
may be used to experimentally verify that this system exhib-
its true multipartite entanglement. We define quadrature op-
erators for each mode as

X̂j = âj + âj
†, Ŷ j = − i�âj − âj

†� , �21�

so that �X̂j , Ŷ j�=2i and the Heisenberg uncertainty principle
requires V�Xj�V�Y j��1, which sets the vacuum noise level.
Conditions that are sufficient to demonstrate bipartite en-
tanglement for Gaussian variables are well known �22�.
These have been generalized to tripartite entanglement by
van Loock and Furusawa �6�, without making any assump-
tions about Gaussian statistics. Using our quadrature defini-
tions, these conditions give a set of three inequalities

V�X̂i − X̂j�i� + V�Ŷ4 + Ŷ5 + Ŷ6� � 4, �22�

where i , j� �4,5 ,6� and V�Â�	�Â2�− �Â�2. The simulta-
neous violation of any two of these conditions proves genu-
ine tripartite entanglement for the system. An undepleted
pump analysis of the interaction Hamiltonian �Eq. �10�� re-
veals that these are the maximally squeezed quadrature com-
binations, so that we can expect optimal entanglement for
these variables �8�.

The Einstein, Podolsky, and Rosen �EPR� paradox stems
from their 1935 paper �1�, which showed that local realism is
not consistent with quantum-mechanical completeness. Opti-
cal quadrature phase amplitudes have the same mathematical
properties as the position and momentum originally consid-
ered by EPR and, as demonstrated by Reid �23�, this prop-
erty can be used to define inferred variances which, when
entangled sufficiently, allow for an inferred violation of the
uncertainty principle. This demonstrates the EPR paradox
and was experimentally studied by Ou et al., who found
clear agreement with quantum theory �24�. Following the
approach of Ref. �23�, we assume that a measurement of the

X̂j quadrature, for example, will allow us to infer, with some

error, the value of the X̂k quadrature, and similarly for the

Ŷ j,k quadratures. Minimizing this error, we can define vari-
ances of the inferred quadratures, the products of which dem-
onstrate the EPR paradox when they appear to violate the
Heisenberg uncertainty principle.

Although tripartite entanglement is present in the system,
it does not appear that a demonstration of the EPR paradox is
possible via the standard two-mode approach. There are two
ways to demonstrate paradoxes of this nature, both involving
information about all three modes. One example is to use
quadrature measurements on one mode to infer values for the
joint state of the other two. This is mathematically equivalent
to inferring, for example, the center-of-mass positions and
momenta of two particles by measurements on a third. In this
case we find, using mode i to infer properties of the com-
bined mode j+k, for example, the inferred variances

Vinf�X̂j ± X̂k� = V�X̂j ± X̂k� −
�V�X̂i,X̂j ± X̂k��2

V�X̂i�
, �23�

with similar expressions holding for the Ŷ quadratures. In the

above V�Â , B̂�= �ÂB̂�− �Â��B̂� and the i , j ,k can be any of
4,5,6 as long as they are all different. The product of the
actual variances always satisfies a Heisenberg inequality so
that there is an experimental demonstration of a three-mode
form of the EPR paradox, whenever

Vinf�X̂j ± X̂k�Vinf�Ŷ j ± Ŷk� � 4 �24�

is violated. Another option is to make measurements on the
combined mode j+k to infer properties of mode i. This leads
to the inferred variances
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Vinf�X̂i� = V�X̂i� −
�V�X̂i,X̂j ± X̂k��2

V�X̂j ± X̂k�
, �25�

and a demonstration of the paradox whenever

Vinf�X̂i�Vinf�Ŷi� � 1 �26�

is violated.
The experimentally accessible quantities are the normally

ordered fluctuation spectra corresponding to the inequalities
defined in Eqs. �22�, �24�, and �25� for which the same rela-
tionships hold. These are defined as Fourier transforms of the
time-normally-ordered operator covariances,

S�Âi,B̂j���� 	 F�:�Âi�t� − �Âi�t����B̂j�0� − �B̂j�0���:� ,

�27�

which are related to the measurable output spectra

Sout�Âi , B̂j���� using the standard input-output relationships

for optical cavities �25�. In the results presented here, we will
treat the output mirror as the only source of damping, which
is a common approximation in theoretical quantum optics.
For the inequalities of Eq. �22� we define the fluctuation
spectra

Iij
out��� = Sout�X̂i − X̂j�i� + Sout�Ŷ4 + Ŷ5 + Ŷ6� , �28�

and use the abbreviation Sout�Âj�	Sout�Âj , Âj�. Similarly, for
the variances in Eqs. �24� and �26�, we obtain variances of
fluctation spectra �Sinf���� which must violate the same in-
equalities in the frequency domain.

We can find relatively simple analytic expressions for the
correlations of Eq. �28� in the case where all the pump am-
plitudes and nonlinearities are equal. We denote the sub-
threshold solutions �Eq. �19�� by 		 	̄�1,2,3�, and the super-
threshold solutions �Eq. �20�� by 	 	̄�4,5,6�. The symmetry
means that I45

out���= I46
out���= I56

out���	 I±
out���, where � ���

denotes the spectra below �above� the oscillation threshold.
The measurable spectra then take the form

I−
out��� = 5 −

8��	�7��	�2 + 10��	 + 4��2 + �2��
���	 + ��2 + �2���2�	 + ��2 + �2�

, �29�

I+
out��� = 5 −

4�2��2 + �2��76���4 + ���2�100�� − 56�2� + ��2 + �2��16�2 + 43�2��
��4���2 + 2�� − �2�2 + �2� + ��2�2���2���2 + 3�� − 2�2�2 + �3� + 2��2�2�

. �30�

The solutions for these quantities are shown for pump field
amplitudes of 0.9Eth and 1.1Eth in Fig. 3. Below threshold
the vacuum outputs exhibit near-total violation of the van
Loock–Furasawa entanglement criteria near zero frequency

and approach the uncorrelated limit of 5 for large frequency.
Above threshold the outputs form bright beams and maintain
a large violation of the inequalities near zero frequency,
which implies strong tripartite entanglement. We note that at

FIG. 3. Spectra for the entanglement criteria of Eq. �22�, for
equal pump amplitudes and nonlinearities in each mode. In all fig-
ures �=0.01, �=1, �=10, and the pump values are E=0.9Eth �solid
line� and E=1.1Eth �dash-dotted line�. All quantities plotted in this
article are dimensionless. The dashed lines represent the limiting
zero-frequency threshold value of 2 /9 and the tripartite correlation
value of 4, which is obviously violated.

FIG. 4. Output fluctuation spectra of the inferred quadratures for
three-mode EPR correlations, from measurements on one or two
modes. Below threshold �E=0.9Eth, solid line� the spectra coincide.
Above threshold �E=1.1Eth, dash-dotted line� two-mode inference
gives better violation than one-mode inference, but the difference is
indistinguishable on this scale.
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E=1.1Eth the intensities of the three low-frequency modes
are twice those of the high-frequency modes. Figure 4 shows
strong inferred violations of Eqs. �24� and �26� for the same
degree of entanglement shown in Fig. 3, indicating that
above threshold the system can be used to demonstrate three-
mode EPR correlations with bright output beams.

In conclusion, we have shown that concurrent intracavity
��2� nonlinearities can be used to produce strongly tripartite
entangled outputs, both above and below the oscillation
threshold. The above-threshold entanglement is found for
macroscopic intensities, demonstrating a bright tripartite en-

tanglement resource. We have also shown how this device
can be used to perform multimode demonstrations of the
EPR paradox. We expect that this proposal will be easier to
stabilize than devices that rely on separate OPOs and multi-
port interferometers.
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