2,566 research outputs found
Î to X Transport of Photoexcited Electrons in Type II GaAs/AlAs Multiple Quantum Well Structures
We report novel femtosecond timeâresolved measurements performed on staggered type II GaAs/AlAs multiple quantum well structures. Photoexcited electrons were determined to transfer from the Î valley of the GaAs layers to the X valleys of the AlAs in 100 and 400 fs for 8â and 11âmonolayerâthick GaAs samples, respectively
Gain in a quantum wire laser of high uniformity
A multi-quantum wire laser operating in the 1-D ground state has been
achieved in a very high uniformity structure that shows free exciton emission
with unprecedented narrow width and low lasing threshold. Under optical pumping
the spontaneous emission evolves from a sharp free exciton peak to a
red-shifted broad band. The lasing photon energy occurs about 5 meV below the
free exciton. The observed shift excludes free excitons in lasing and our
results show that Coulomb interactions in the 1-D electron-hole system shift
the spontaneous emission and play significant roles in laser gain.Comment: 4 pages, 4 figures, prepared by RevTe
The PyCBC search for gravitational waves from compact binary coalescence
We describe the PyCBC search for gravitational waves from compact-object
binary coalescences in advanced gravitational-wave detector data. The search
was used in the first Advanced LIGO observing run and unambiguously identified
two black hole binary mergers, GW150914 and GW151226. At its core, the PyCBC
search performs a matched-filter search for binary merger signals using a bank
of gravitational-wave template waveforms. We provide a complete description of
the search pipeline including the steps used to mitigate the effects of noise
transients in the data, identify candidate events and measure their statistical
significance. The analysis is able to measure false-alarm rates as low as one
per million years, required for confident detection of signals. Using data from
initial LIGO's sixth science run, we show that the new analysis reduces the
background noise in the search, giving a 30% increase in sensitive volume for
binary neutron star systems over previous searches.Comment: 29 pages, 7 figures, accepted by Classical and Quantum Gravit
DISCUS: end-to-end network design for ubiquitous high speed broadband services
Fibre-to-the-premises (FTTP) has been long sought as the ultimate solution to satisfy the demand for broadband access in the foreseeable future, and offer distance-independent data rate within access network reach. However, currently deployed FTTP networks have in most cases only replaced the transmission medium, without improving the overall architecture, resulting in deployments that are only cost efficient in densely populated areas (effectively increasing the digital divide). In addition, the large potential increase in access capacity cannot be matched by a similar increase in core capacity at competitive cost, effectively moving the bottleneck from access to core. DISCUS is a European Integrated Project that, building on optical-centric solutions such as Long-Reach Passive Optical access and flat optical core, aims to deliver a cost-effective architecture for ubiquitous broadband services. One of the key features of the project is the end-to-end approach, which promises to deliver a complete network design and a conclusive analysis of its economic viability
Cryo-EM demonstrates the in vitro proliferation of an ex vivo amyloid fibril morphology by seeding
Several studies showed that seeding of solutions of monomeric fibril proteins with ex vivo amyloid fibrils accelerated the kinetics of fibril formation in vitro but did not necessarily replicate the seed structure. In this research we use cryo-electron microscopy and other methods to analyze the ability of serum amyloid A (SAA)1.1-derived amyloid fibrils, purified from systemic AA amyloidosis tissue, to seed solutions of recombinant SAA1.1 protein. We show that 98% of the seeded fibrils remodel the full fibril structure of the main ex vivo fibril morphology, which we used for seeding, while they are notably different from unseeded in vitro fibrils. The seeded fibrils show a similar proteinase K resistance as ex vivo fibrils and are substantially more stable to proteolytic digestion than unseeded in vitro fibrils. Our data support the view that the fibril morphology contributes to determining proteolytic stability and that pathogenic amyloid fibrils arise from proteolytic selection
DISCUS : an end-to-end solution for ubiquitous broadband optical access
Fiber to the premises has promised to increase the capacity in telecommunications access networks for well over 30 years. While it is widely recognized that optical-fiber-based access networks will be a necessity in the shortto medium-term future, its large upfront cost and regulatory issues are pushing many operators to further postpone its deployment, while installing intermediate unambitious solutions such as fiber to the cabinet. Such high investment cost of both network access and core capacity upgrade often derives from poor planning strategies that do not consider the necessity to adequately modify the network architecture to fully exploit the cost benefit that a fiber-centric solution can bring. DISCUS is a European Framework 7 Integrated Project that, building on optical-centric solutions such as long-reach passive optical access and flat optical core, aims to deliver a cost-effective architecture for ubiquitous broadband services. DISCUS analyzes, designs, and demonstrates end-to-end architectures and technologies capable of saving cost and energy by reducing the number of electronic terminations in the network and sharing the deployment costs among a larger number of users compared to current fiber access systems. This article describes the network architecture and the supporting technologies behind DISCUS, giving an overview of the concepts and methodologies that will be used to deliver our end-to-end network solution
Lambda production in 40 A GeV/c Pb-Au collisions
During the 1999 lead run, CERES has measured hadron and electron-pair
production at 40 A GeV/c beam momentum with the spectrometer upgraded by the
addition of a radial TPC. Here the analysis of lambda and antilambda will be
presented.Comment: 8 pages, 8 figures. 6th International Conference on Strange Quarks in
Matter, Frankfurt 200
Testing gravitational-wave searches with numerical relativity waveforms: Results from the first Numerical INJection Analysis (NINJA) project
The Numerical INJection Analysis (NINJA) project is a collaborative effort
between members of the numerical relativity and gravitational-wave data
analysis communities. The purpose of NINJA is to study the sensitivity of
existing gravitational-wave search algorithms using numerically generated
waveforms and to foster closer collaboration between the numerical relativity
and data analysis communities. We describe the results of the first NINJA
analysis which focused on gravitational waveforms from binary black hole
coalescence. Ten numerical relativity groups contributed numerical data which
were used to generate a set of gravitational-wave signals. These signals were
injected into a simulated data set, designed to mimic the response of the
Initial LIGO and Virgo gravitational-wave detectors. Nine groups analysed this
data using search and parameter-estimation pipelines. Matched filter
algorithms, un-modelled-burst searches and Bayesian parameter-estimation and
model-selection algorithms were applied to the data. We report the efficiency
of these search methods in detecting the numerical waveforms and measuring
their parameters. We describe preliminary comparisons between the different
search methods and suggest improvements for future NINJA analyses.Comment: 56 pages, 25 figures; various clarifications; accepted to CQ
- âŠ