200 research outputs found

    Smoking Gun: The Moral and Legal Struggle for Medical Marijuana

    Get PDF

    Charles C. Jones, Jr. : Resilient Southerner

    Get PDF

    Disrupting to Sustain: Teacher Preparation Through Innovative Teaching and Learning Practices

    Get PDF
    The main purpose of this paper is to respond to the call to re-envision higher education and to share experiences of hope that provide concrete examples about possibilities of enacting liberatory education in higher education. This article focuses on the work of one junior faculty member and four doctoral students who participate in a critical inquiry group and research collective called the “Critical Education Research Collective,” (CERC). As social justice educators, in this shared space we engage in meaningful teaching and inquiry practices that involve teaching and research methodologies, education theory, dialogue, reflection and praxis. While research has highlighted the ways in which inquiry groups can be used as an intentional and systematic examination into teaching practice, this essay describes the structure, functioning, theoretical standpoints and the process of becoming a doctoral student and professor-led critical inquiry group. The group came together as a way to sustain the work and research development of both the doctoral students and the junior faculty in the collective

    Elastic Scattering by Deterministic and Random Fractals: Self-Affinity of the Diffraction Spectrum

    Full text link
    The diffraction spectrum of coherent waves scattered from fractal supports is calculated exactly. The fractals considered are of the class generated iteratively by successive dilations and translations, and include generalizations of the Cantor set and Sierpinski carpet as special cases. Also randomized versions of these fractals are treated. The general result is that the diffraction intensities obey a strict recursion relation, and become self-affine in the limit of large iteration number, with a self-affinity exponent related directly to the fractal dimension of the scattering object. Applications include neutron scattering, x-rays, optical diffraction, magnetic resonance imaging, electron diffraction, and He scattering, which all display the same universal scaling.Comment: 20 pages, 11 figures. Phys. Rev. E, in press. More info available at http://www.fh.huji.ac.il/~dani

    Quantum Energy Inequalities in Pre-Metric Electrodynamics

    Get PDF
    Pre-metric electrodynamics is a covariant framework for electromagnetism with a general constitutive law. Its lightcone structure can be more complicated than that of Maxwell theory as is shown by the phenomenon of birefringence. We study the energy density of quantized pre-metric electrodynamics theories with linear constitutive laws admitting a single hyperbolicity double-cone and show that averages of the energy density along the worldlines of suitable observers obey a Quantum Energy Inequality (QEI) in states that satisfy a microlocal spectrum condition. The worldlines must meet two conditions: (a) the classical weak energy condition must hold along them, and (b) their velocity vectors have positive contractions with all positive frequency null covectors (we call such trajectories `subluminal'). After stating our general results, we explicitly quantize the electromagnetic potential in a translationally invariant uniaxial birefringent crystal. Since the propagation of light in such a crystal is governed by two nested lightcones, the theory shows features absent in ordinary (quantized) Maxwell electrodynamics. We then compute a QEI bound for worldlines of inertial `subluminal' observers, which generalizes known results from the Maxwell theory. Finally, it is shown that the QEIs fail along trajectories that have velocity vectors which are timelike with respect to only one of the lightcones

    Apparent Fractality Emerging from Models of Random Distributions

    Full text link
    The fractal properties of models of randomly placed nn-dimensional spheres (nn=1,2,3) are studied using standard techniques for calculating fractal dimensions in empirical data (the box counting and Minkowski-sausage techniques). Using analytical and numerical calculations it is shown that in the regime of low volume fraction occupied by the spheres, apparent fractal behavior is observed for a range of scales between physically relevant cut-offs. The width of this range, typically spanning between one and two orders of magnitude, is in very good agreement with the typical range observed in experimental measurements of fractals. The dimensions are not universal and depend on density. These observations are applicable to spatial, temporal and spectral random structures. Polydispersivity in sphere radii and impenetrability of the spheres (resulting in short range correlations) are also introduced and are found to have little effect on the scaling properties. We thus propose that apparent fractal behavior observed experimentally over a limited range may often have its origin in underlying randomness.Comment: 19 pages, 12 figures. More info available at http://www.fh.huji.ac.il/~dani

    Recommendations for the standardisation of open taxonomic nomenclature for image-based identifications

    Get PDF
    This paper recommends best practice for the use of open nomenclature (ON) signs applicable to image-based faunal analyses. It is one of numerous initiatives to improve biodiversity data input to improve the reliability of biological datasets and their utility in informing policy and management. Image-based faunal analyses are increasingly common but have limitations in the level of taxonomic precision that can be achieved, which varies among groups and imaging methods. This is particularly critical for deep-sea studies owing to the difficulties in reaching confident species-level identifications of unknown taxa. ON signs indicate a standard level of identification and improve clarity, precision and comparability of biodiversity data. Here we provide examples of recommended usage of these terms for input to online databases and preparation of morphospecies catalogues. Because the processes of identification differ when working with physical specimens and with images of the taxa, we build upon previously provided recommendations for specific use with image-based identifications

    The calibration and evaluation of speed-dependent automatic zooming interfaces.

    Get PDF
    Speed-Dependent Automatic Zooming (SDAZ) is an exciting new navigation technique that couples the user's rate of motion through an information space with the zoom level. The faster a user scrolls in the document, the 'higher' they fly above the work surface. At present, there are few guidelines for the calibration of SDAZ. Previous work by Igarashi & Hinckley (2000) and Cockburn & Savage (2003) fails to give values for predefined constants governing their automatic zooming behaviour. The absence of formal guidelines means that SDAZ implementers are forced to adjust the properties of the automatic zooming by trial and error. This thesis aids calibration by identifying the low-level components of SDAZ. Base calibration settings for these components are then established using a formal evaluation recording participants' comfortable scrolling rates at different magnification levels. To ease our experiments with SDAZ calibration, we implemented a new system that provides a comprehensive graphical user interface for customising SDAZ behaviour. The system was designed to simplify future extensions---for example new components such as interaction techniques and methods to render information can easily be added with little modification to existing code. This system was used to configure three SDAZ interfaces: a text document browser, a flat map browser and a multi-scale globe browser. The three calibrated SDAZ interfaces were evaluated against three equivalent interfaces with rate-based scrolling and manual zooming. The evaluation showed that SDAZ is 10% faster for acquiring targets in a map than rate-based scrolling with manual zooming, and SDAZ is 4% faster for acquiring targets in a text document. Participants also preferred using automatic zooming over manual zooming. No difference was found for the globe browser for acquisition time or preference. However, in all interfaces participants commented that automatic zooming was less physically and mentally draining than manual zooming

    ”ChemLab: twenty years of developing CBRNE detection systems with low false alarm rates

    Get PDF
    Gas Chromatography (GC) is routinely used in the laboratory to temporally separate chemical mixtures into their constituent components for improved chemical identification. This paper will provide a overview of more than twenty years of development of one-dimensional field-portable micro GC systems, highlighting key experimental results that illustrate how a reduction in false alarm rate (FAR) is achieved in real-world environments. Significantly, we will also present recent results on a micro two-dimensional GC (micro GCxGC) technology. This ultra-small system consists of microfabricated columns, NanoElectroMechanical System (NEMS) cantilever resonators for detection, and a valve-based stop-flow modulator. The separation of a 29-component polar mixture in less than 7 seconds is demonstrated along with peak widths in the second dimension ranging from 10-60 ms. For this system, a peak capacity of just over 300 was calculated for separation in about 6 s. This work has important implications for field detection, to drastically reduce FAR and significantly improve chemical selectivity and identification. This separation performance was demonstrated with the NEMS resonator and bench scale FID. But other detectors, suitably fast and sensitive can work as well. Recent research has shown that the identification power of GCxGC-FID can match that of GC-MS. This result indicates a path to improved size, weight, power, and performance in micro GCxGC systems outfitted with relatively non-specific, lightweight detectors. We will briefly discuss the performance of possible options, such as the pulsed discharge helium ionization detector (PDHID) and miniature correlation ion mobility spectrometer (mini-CIMS)
    • 

    corecore