30 research outputs found

    Measurement of Rashba and Dresselhaus spin-orbit magnetic fields

    Full text link
    Spin-orbit coupling is a manifestation of special relativity. In the reference frame of a moving electron, electric fields transform into magnetic fields, which interact with the electron spin and lift the degeneracy of spin-up and spin-down states. In solid-state systems, the resulting spin-orbit fields are referred to as Dresselhaus or Rashba fields, depending on whether the electric fields originate from bulk or structure inversion asymmetry, respectively. Yet, it remains a challenge to determine the absolute value of both contributions in a single sample. Here we show that both fields can be measured by optically monitoring the angular dependence of the electrons' spin precession on their direction of movement with respect to the crystal lattice. Furthermore, we demonstrate spin resonance induced by the spin-orbit fields. We apply our method to GaAs/InGaAs quantum-well electrons, but it can be used universally to characterise spin-orbit interactions in semiconductors, facilitating the design of spintronic devices

    Dynamical spin-electric coupling in a quantum dot

    Full text link
    Due to the spin-orbital coupling in a semiconductor quantum dot, a freely precessing electron spin produces a time-dependent charge density. This creates a sizeable electric field outside the dot, leading to promising applications in spintronics. The spin-electric coupling can be employed for non-invasive single spin detection by electrical methods. We also consider a spin relaxation mechanism due to long-range coupling to electrons in gates and elsewhere in the system, and find a contribution comparable to, and in some cases dominant over previously discussed mechanisms.Comment: 4 pages, 2 figure

    Theory of electrical spin injection: Tunnel contacts as a solution of the conductivity mismatch problem

    Full text link
    Theory of electrical spin injection from a ferromagnetic (FM) metal into a normal (N) conductor is presented. We show that tunnel contacts (T) can dramatically increase spin injection and solve the problem of the mismatch in the conductivities of a FM metal and a semiconductor microstructure. We also present explicit expressions for the spin-valve resistance of FM-T-N- and FM-T-N-T-FM-junctions with tunnel contacts at the interfaces and show that the resistance includes both positive and negative contributions (Kapitza resistance and injection conductivity, respectively).Comment: 4 pages, to appear in Phys. Rev. B (rapid communications

    Spintronics: Fundamentals and applications

    Get PDF
    Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems. This article reviews the current status of this subject, including both recent advances and well-established results. The primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport in semiconductors and metals. Spin transport differs from charge transport in that spin is a nonconserved quantity in solids due to spin-orbit and hyperfine coupling. The authors discuss in detail spin decoherence mechanisms in metals and semiconductors. Various theories of spin injection and spin-polarized transport are applied to hybrid structures relevant to spin-based devices and fundamental studies of materials properties. Experimental work is reviewed with the emphasis on projected applications, in which external electric and magnetic fields and illumination by light will be used to control spin and charge dynamics to create new functionalities not feasible or ineffective with conventional electronics.Comment: invited review, 36 figures, 900+ references; minor stylistic changes from the published versio

    Powers of Romance: The Liminal Challenges of Managing Organizational Intimacy

    Get PDF
    © The Author(s) 2014 Problematic organizational relationships have recently been at the core of highly visible media coverage. Most analyses of sexual relations in organizations have been, however, simplistic and unidimensional, and have placed insufficient systematic emphasis on the role of governmentality in the social construction of organizational romance. In this article, we proceed in two theoretical steps. First, we elaborate a typology of organizational romance that covers different manifestations of this nuanced process. We think of these as organizational strategies of governmentality. Second, we elaborate and identify liminal cases that fall into the interstices of the four predominant ways of managing sexual relationships in organizations. We think of these as vases of liquid love and life that evade the border controls of regulation by governmentality. Finally, we relate these issues to debates about the nature of the civilizational process and suggest hypotheses for future research

    Semiconductor Spintronics

    Full text link
    Spintronics refers commonly to phenomena in which the spin of electrons in a solid state environment plays the determining role. In a more narrow sense spintronics is an emerging research field of electronics: spintronics devices are based on a spin control of electronics, or on an electrical and optical control of spin or magnetism. This review presents selected themes of semiconductor spintronics, introducing important concepts in spin transport, spin injection, Silsbee-Johnson spin-charge coupling, and spindependent tunneling, as well as spin relaxation and spin dynamics. The most fundamental spin-dependent nteraction in nonmagnetic semiconductors is spin-orbit coupling. Depending on the crystal symmetries of the material, as well as on the structural properties of semiconductor based heterostructures, the spin-orbit coupling takes on different functional forms, giving a nice playground of effective spin-orbit Hamiltonians. The effective Hamiltonians for the most relevant classes of materials and heterostructures are derived here from realistic electronic band structure descriptions. Most semiconductor device systems are still theoretical concepts, waiting for experimental demonstrations. A review of selected proposed, and a few demonstrated devices is presented, with detailed description of two important classes: magnetic resonant tunnel structures and bipolar magnetic diodes and transistors. In most cases the presentation is of tutorial style, introducing the essential theoretical formalism at an accessible level, with case-study-like illustrations of actual experimental results, as well as with brief reviews of relevant recent achievements in the field.Comment: tutorial review; 342 pages, 132 figure

    Characterization of microRNAs encoded by the bovine herpesvirus 1 genome

    No full text
    Bovine herpesvirus 1 (BoHV-1) is a ubiquitous and important pathogen of cattle worldwide. This study reports the identification of 10 microRNA (miRNA) genes, Bhv1-mir-B1–Bhv1-mir-B10, encoded by the BoHV-1 genome that were processed into 12 detectable mature miRNAs as determined by ultra-high throughput sequencing bioinformatics analyses of small RNA libraries and expression studies. We found that four of the miRNA genes were present as two copies in the BoHV-1 genome, resulting in a total of 14 miRNA encoding loci. Unique features of the BoHV-1 miRNAs include evidence of bidirectional transcription and a close association of two miRNA genes with the origin of replication, including one miRNA that is encoded within the origin of replication. The miRNA gene Bhv1-mir-B5 was encoded on the opposite DNA strand to the latency associated transcript, potentially giving rise to antisense transcripts originating from this locus. The association of herpesvirus miRNAs with latency appears to be a common feature in the alphaherpesviruses. Analyses of the BoHV-5 genome for putative miRNA gene orthologues identified a high degree of evolutionary conservation for nine of the BoHV-1 miRNA genes. The possible roles for BoHV-1 miRNAs in the regulation of known BoHV-1 transcription units and the genetics of the BoHV-1 genotypes are also discussed

    Foreign competition, domestic competition and innovation in Chinese private high-tech new ventures

    Get PDF
    Competition plays an important role in creating conditions favourable to innovation. However, is this the case for all types of competition? While recognizing the importance of competition in innovation, we address this question by examining the impact of foreign and domestic competition on the innovation performance of private high-tech new ventures. We argue that the impact of foreign and domestic competition on the innovation performance of local private firms may vary, due to the different types of resource interdependence with their competitors and learning gained by private firms. To test these arguments, we conducted a multilevel analysis of 805 Chinese private high-tech firms over the period 2001-2007. Our findings suggest that foreign competition has a U-shaped relationship with the innovation performance of private firms, whereas competition from state-owned enterprises positively affects private firms' innovation performance. Our study moves beyond the debate on whether competition increases or decreases innovation by unpacking the differential effects exerted by different types of competitors on the innovation performance of local private firms in the context of a transition economy
    corecore