9 research outputs found

    <sup>19</sup>F-NMR Reveals the Role of Mobile Loops in Product and Inhibitor Binding by the São Paulo Metallo-β-Lactamase

    Get PDF
    The role of metallo-β-lactamases (MBLs) in β-lactam antibiotic resistance is a growing problem. We describe the use of protein-observe 19F-NMR (PrOF NMR) to study the dynamics of the São Paolo MBL (SPM-1) from β-lactam resistant Pseudomonas aeruginosa. Cysteinyl-variants on the α3 and L3 regions, which flank the di-Zn(II) active site, were selectively 19F-labeled using 3-bromo-1,1,1,-trifluoroacetone. The PrOF NMR results reveal roles for the mobile α3 and L3 regions in both inhibitor and hydrolyzed β-lactam product binding to SPM-1. They have implications for the mechanisms and inhibition of MBLs by β-lactams and non-β-lactams and illustrate the utility of PrOF NMR for efficiently analyzing metal chelation, identifying new binding modes, and studying protein binding from a mixture of equilibrating isomers

    Expression of <i>Idh1</i><sup>R132H</sup> in the murine subventricular zone stem cell niche recapitulates features of early gliomagenesis

    Get PDF
    Isocitrate dehydrogenase 1 mutations drive human gliomagenesis, probably through neomorphic enzyme activity that produces D-2-hydroxyglutarate. To model this disease, we conditionally expressed Idh1(R132H) in the subventricular zone (SVZ) of the adult mouse brain. The mice developed hydrocephalus and grossly dilated lateral ventricles, with accumulation of 2-hydroxyglutarate and reduced α-ketoglutarate. Stem and transit amplifying/progenitor cell populations were expanded, and proliferation increased. Cells expressing SVZ markers infiltrated surrounding brain regions. SVZ cells also gave rise to proliferative subventricular nodules. DNA methylation was globally increased, while hydroxymethylation was decreased. Mutant SVZ cells overexpressed Wnt, cell-cycle and stem cell genes, and shared an expression signature with human gliomas. Idh1(R132H) mutation in the major adult neurogenic stem cell niche causes a phenotype resembling gliomagenesis

    Studying the active-site loop movement of the São Paolo metallo-β-lactamase-1

    No full text
    Metallo-β-lactamases (MBLs) catalyse the hydrolysis of almost all β-lactam antibiotics. We report biophysical and kinetic studies on the São Paulo MBL (SPM-1), which reveal its Zn(ii) ion usage and mechanism as characteristic of the clinically important di-Zn(ii) dependent B1 MBL subfamily. Biophysical analyses employing crystallography, dynamic (19)F NMR and ion mobility mass spectrometry, however, reveal that SPM-1 possesses loop and mobile element regions characteristic of the B2 MBLs. These include a mobile α3 region which is important in catalysis and determining inhibitor selectivity. SPM-1 thus appears to be a hybrid B1/B2 MBL. The results have implications for MBL evolution and inhibitor design

    Phenotypic spectrum of GABRA1

    No full text
    Objective: To delineate phenotypic heterogeneity, we describe the clinical features of a cohort of patients with GABRA1 gene mutations. Methods: Patients with GABRA1 mutations were ascertained through an international collaboration. Clinical, EEG, and genetic data were collected. Functional analysis of 4 selected mutations was performed using the Xenopus laevis oocyte expression system. Results: The study included 16 novel probands and 3 additional family members with a disease-causing mutation in the GABRA1 gene. The phenotypic spectrum varied from unspecified epilepsy (1), juvenile myoclonic epilepsy (2), photosensitive idiopathic generalized epilepsy (1), and generalized epilepsy with febrile seizures plus (1) to severe epileptic encephalopathies (11). In the epileptic encephalopathy group, the patients had seizures beginning between the first day of life and 15 months, with a mean of 7 months. Predominant seizure types in all patients were tonic-clonic in 9 participants (56%) and myoclonic seizures in 5 (31%). EEG showed a generalized photoparoxysmal response in 6 patients (37%). Four selected mutations studied functionally revealed a loss of function, without a clear genotype-phenotype correlation. Conclusions: GABRA1 mutations make a significant contribution to the genetic etiology of both benign and severe epilepsy syndromes. Myoclonic and tonic-clonic seizures with pathologic response to photic stimulation are common and shared features in both mild and severe phenotypes
    corecore