796 research outputs found
Critical point for the CAF-F phase transition at charge neutrality in bilayer graphene
We report on magneto-transport measurements up to 30 T performed on a bilayer
graphene Hall bar, enclosed by two thin hexagonal boron nitride flakes. Our
high mobility sample exhibits an insulating state at neutrality point which
evolves into a metallic phase when a strong in-plane field is applied, as
expected for a transition from a canted antiferromagnetic to a ferromagnetic
spin ordered phase. For the first time we individuate a temperature-independent
crossing in the four-terminal resistance as a function of the total magnetic
field, corresponding to the critical point of the transition. We show that the
critical field scales linearly with the perpendicular component of the field,
as expected from the underlying competition between the Zeeman energy and
interaction-induced anisotropies. A clear scaling of the resistance is also
found and an universal behavior is proposed in the vicinity of the transition
Field-induced insulating states in a graphene superlattice
We report on high-field magnetotransport (B up to 35 T) on a gated
superlattice based on single-layer graphene aligned on top of hexagonal boron
nitride. The large-period moir\'e modulation (15 nm) enables us to access the
Hofstadter spectrum in the vicinity of and above one flux quantum per
superlattice unit cell (Phi/Phi_0 = 1 at B = 22 T). We thereby reveal, in
addition to the spin-valley antiferromagnet at nu = 0, two insulating states
developing in positive and negative effective magnetic fields from the main nu
= 1 and nu = -2 quantum Hall states respectively. We investigate the field
dependence of the energy gaps associated with these insulating states, which we
quantify from the temperature-activated peak resistance. Referring to a simple
model of local Landau quantization of third generation Dirac fermions arising
at Phi/Phi_0 = 1, we describe the different microscopic origins of the
insulating states and experimentally determine the energy-momentum dispersion
of the emergent gapped Dirac quasi-particles
Anisotropic and strong negative magneto-resistance in the three-dimensional topological insulator Bi2Se3
We report on high-field angle-dependent magneto-transport measurements on
epitaxial thin films of Bi2Se3, a three-dimensional topological insulator. At
low temperature, we observe quantum oscillations that demonstrate the
simultaneous presence of bulk and surface carriers. The magneto- resistance of
Bi2Se3 is found to be highly anisotropic. In the presence of a parallel
electric and magnetic field, we observe a strong negative longitudinal
magneto-resistance that has been consid- ered as a smoking-gun for the presence
of chiral fermions in a certain class of semi-metals due to the so-called axial
anomaly. Its observation in a three-dimensional topological insulator implies
that the axial anomaly may be in fact a far more generic phenomenon than
originally thought.Comment: 6 pages, 4 figure
Syndromes associated with mitochondrial DNA depletion
This is an Open Access article distributed under the terms of the Creative
Commons Attribution License.Mitochondrial dysfunction accounts for a large group of inherited metabolic disorders most of which are due to a dysfunctional mitochondrial respiratory chain (MRC) and, consequently, deficient energy production. MRC function depends on the coordinated expression of both nuclear (nDNA) and mitochondrial (mtDNA) genomes. Thus, mitochondrial diseases can be caused by genetic defects in either the mitochondrial or the nuclear genome, or in the cross-talk between the two. This impaired cross-talk gives rise to so-called nuclear-mitochondrial intergenomic communication disorders, which result in loss or instability of the mitochondrial genome and, in turn, impaired maintenance of qualitative and quantitative mtDNA integrity. In children, most MRC disorders are associated with nuclear gene defects rather than alterations in the mtDNA itself.The mitochondrial DNA depletion syndromes (MDSs) are a clinically heterogeneous group of disorders with an autosomal recessive pattern of transmission that have onset in infancy or early childhood and are characterized by a reduced number of copies of mtDNA in affected tissues and organs. The MDSs can be divided into least four clinical presentations: hepatocerebral, myopathic, encephalomyopathic and neurogastrointestinal. The focus of this review is to offer an overview of these syndromes, listing the clinical phenotypes, together with their relative frequency, mutational spectrum, and possible insights for improving diagnostic strategies.CN was supported by the Portuguese Foundation for Science and Technology (SFRH/BD/45247/2008). LSA was supported by the Portuguese Foundation for Science and Technology (FCT C2008/INSA/P4)
Spherical orbit closures in simple projective spaces and their normalizations
Let G be a simply connected semisimple algebraic group over an algebraically
closed field k of characteristic 0 and let V be a rational simple G-module of
finite dimension. If G/H \subset P(V) is a spherical orbit and if X is its
closure, then we describe the orbits of X and those of its normalization. If
moreover the wonderful completion of G/H is strict, then we give necessary and
sufficient combinatorial conditions so that the normalization morphism is a
homeomorphism. Such conditions are trivially fulfilled if G is simply laced or
if H is a symmetric subgroup.Comment: 24 pages, LaTeX. v4: Final version, to appear in Transformation
Groups. Simplified some proofs and corrected minor mistakes, added
references. v3: major changes due to a mistake in previous version
High-speed double layer graphene electro-absorption modulator on SOI waveguide
We report on a C-band double layer graphene electro-absorption modulator on a passive SOI platform showing 29GHz 3dB-bandwith and NRZ eye-diagrams extinction ratios ranging from 1.7 dB at 10 Gb/s to 1.3 dB at 50 Gb/s. Such high modulation speed is achieved thanks to the quality of the CVD pre-patterned single crystal growth and transfer on wafer method that permitted the integration of high-quality scalable graphene and low contact resistance. By demonstrating this high-speed CVD graphene EAM modulator integrated on Si photonics and the scalable approach, we are confident that graphene can satisfy the main requirements to be a competitive technology for photonics
- …