52 research outputs found

    High-Resolution Ion Implantation from keV to MeV

    Get PDF

    Bright optical centre in diamond with narrow, highly polarised and nearly phonon-free fluorescence at room temperature

    Get PDF
    Using shallow implantation of ions and molecules with masses centred at 27 atomic mass units(amu) in diamond, a new artificial optical centre with unique properties has been created. The centre shows a linearly polarised fluorescence with a main narrow emission line mostly found at 582 nm, together with a weak vibronic sideband at room temperature. The fluorescence lifetime is∼2 ns and the brightest centres are more than three times brighter than the nitrogen-vacancy centres. A majority of the centres shows stable fluorescence whereas some others present a blinking behaviour, at faster or slower rates. Furthermore, a second kind of optical centre has been simultaneously created in the same diamond sample, within the same ion implantation run. This centre has a narrow zero-phonon line (ZPL) at∼546 nm and a broad phonon sideband at room temperature. Interestingly, optically detected magnetic resonance (ODMR) has been measured on several single 546 nm centres and two resonance peaks are found at 0.99 and 1.27 GHz. In view of their very similar ODMR and optical spectra, the 546 nm centre is likely to coincide with the ST1 centre, reported once (with a ZPL at 550 nm), but of still unknown nature. These new kinds of centres are promising for quantum information processing, sub-diffraction optical imaging or use as single-photon sources

    Nanoscale nuclear magnetic resonance with a 1.9-nm-deep nitrogen-vacancy sensor

    Get PDF
    We present nanoscale nuclear magnetic resonance (NMR) measurements performed with nitrogen-vacancy (NV) centers located down to about 2 nm from the diamond surface. NV centers were created by shallow ion implantation followed by a slow, nanometer-by-nanometer removal of diamond material using oxidative etching in air. The close proximity of NV centers to the surface yielded large 1H NMR signals of up to 3.4 lT-rms, corresponding to ~330 statistically polarized or ~10 fully polarized proton spins in a (1.8 nm)3 detection volume

    Spectral features of Pb-related color centers in diamond: a systematic photoluminescence characterization

    Get PDF
    We report on the systematic characterization of the optical properties of diamond color centers based on Pb impurities. An ensemble photoluminescence analysis of their spectral emission was performed at different excitation wavelengths in the 405–520 nm range and at different temperatures in the 4–300 K range. The series of observed spectral features consist of different emission lines associated with Pb-related defects. Finally, a room-temperature investigation of single-photon emitters under 490.5 nm laser excitation is reported, revealing different spectral signatures with respect to those already reported under 514 nm excitation. This work represents a substantial progress with respect to previous studies on Pb-related color centers, both in the attribution of an articulated series of spectral features and in the understanding of the formation process of this type of defect, thus clarifying the potential of this system for high-impact applications in quantum technologies

    Spectral Emission Dependence of Tin‐Vacancy Centers in Diamond from Thermal Processing and Chemical Functionalization

    Get PDF
    We report a systematic photoluminescence (PL) investigation of the spectral emission properties of individual optical defects fabricated in diamond upon ion implantation and annealing. Three spectral lines at 620 nm, 631 nm, and 647 nm are identified and attributed to the SnV center due to their occurrence in the PL spectra of the very same single-photon emitting defects. We show that the relative occurrence of the three spectral features can be modified by oxidizing the sample surface following thermal annealing. We finally report the relevant emission properties of each class of individual emitters, including the excited state emission lifetime and the emission intensity saturation parameters.Comment: 12 pages, 6 figures, 1 tabl

    Spectral features of Pb-related color centers in diamond – a systematic photoluminescence characterization

    Get PDF
    We report on the systematic characterization of the optical properties of diamond color centers based on Pb impurities. An ensemble photoluminescence analysis of their spectral emission was performed at different excitation wavelengths in the 405-520 nm range and at different temperatures in the 4-300 K range. The series of observed spectral features consist of different emission lines associated with Pb-related defects. Finally, a room-temperature investigation of single-photon emitters under 490.5 nm laser excitation is reported, revealing different spectral signatures with respect to those already reported under 514 nm excitation. This work represents a substantial progress with respect to previous studies on Pb-related color centers, both in the attribution of an articulated series of spectral features and in the understanding of the formation process of this type of defect, thus clarifying the potential of this system for high-impact applications in quantum technologies

    Nanoimplantation and Purcell enhancement of single nitrogen-vacancy centers in photonic crystal cavities in diamond

    Get PDF
    We present the controlled creation of single nitrogen-vacancy (NV) centers via ion implantation at the center of a photonic crystal cavity which is fabricated in an ultrapure, single crystal diamond membrane. High-resolution placement of NV centers is achieved using collimation of a 5 keV-nitrogen ion beam through a pierced tip of an atomic force microscope. We demonstrate coupling of the implanted NV centers’ broad band fluorescence to a cavity mode and observe Purcell enhancement of the spontaneous emission. The results are in good agreement with a master equation model for the cavity coupling
    corecore