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We present the controlled creation of single nitrogen-vacancy (NV) centers via ion implantation at

the center of a photonic crystal cavity which is fabricated in an ultrapure, single crystal diamond

membrane. High-resolution placement of NV centers is achieved using collimation of a

5 keV-nitrogen ion beam through a pierced tip of an atomic force microscope. We demonstrate

coupling of the implanted NV centers’ broad band fluorescence to a cavity mode and observe

Purcell enhancement of the spontaneous emission. The results are in good agreement with a master

equation model for the cavity coupling. VC 2015 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4922117]

The nitrogen-vacancy (NV) center1 in diamond has been

successfully implemented as solid state quantum bit that

meets all essential requirements for quantum information

processing such as optical initialization, control, and readout

of the spin state. The challenge remains to extend the quan-

tum system from a small number of qubits to large scale net-

works. Seminal experiments already demonstrated remote

entanglement between individual NV centers via two-photon

quantum interference.2,3 The hitherto poor rate of entangle-

ment events2,3 could be strongly increased by coupling the

NV centers to optical microcavities. The effects range from

enhancement and spectral reshaping of the NV spectrum

over cavity-enhanced spin state readout4 to cavity mediated

entanglement between two NV centers.5 Photonic crystal

(PhC) cavities directly fabricated in diamond are ideal for

color center-cavity coupling experiments as they exhibit

high Q-factors and extremely small mode volumes. For solid

state systems, it is, however, challenging to precisely place

the emitter in the maximum of the cavity electric field to

achieve optimum coupling.

Past experiments that demonstrated coupling of single

NV centers to PhC cavities6,7 have largely relied on random

positioning. Controlled lateral positioning and emitter-cavity

coupling have recently been achieved via a tailored fabrica-

tion process of a PhC around a single silicon-vacancy center

in diamond.8 Here, we pursuit the complementary approach

based on targeted implantation of NV centers into pre-

defined cavities in diamond. In recent years, several techni-

ques for spatially selective formation of single NV centers in

bulk diamond have been developed involving focused nitro-

gen ion beam,9 implantation through pierced atomic force

microscope (AFM)-tips10,11 and through small apertures in

e-beam resist,12,13 mica foils,14 and silicon masks.15 Using

the silicon mask simultaneously as an etch mask would allow

for controlled emitter-cavity placement.16

In our experiment, we achieve high resolution implanta-

tion of NV centers within two-dimensional diamond-based

PhC cavities using a combined system of a nitrogen ion

beam and an atomic force microscope (Fig. 1(a)) that allows

for collimation and lateral positioning of the ion beam.10,11

We verify the successful formation of a small number of NV

centers and demonstrate Purcell enhancement of the broad

NV emission when coupled to the confined cavity field.

The PhCs consist of a triangular lattice of air holes

milled in a single crystal diamond membrane with a

FIG. 1. Nanoimplantation process of nitrogen ions into diamond-based pho-

tonic crystal cavities: (a) Schematic diagram of the nanoimplanter setup that

combines collimation and positioning of a 5 keV nitrogen ion beam with

an AFM. A small hole in the AFM tip serves as an aperture for the ion beam.

(b) SEM image and (c) AFM image of a fabricated M1-cavity. (d) M1-cavity

spectrum prior implantation reveals three cavity modes c1, c2, and c3 at 653,

670, and 681 nm close to the theoretical NV ZPL at 637 nm (red line).a)christoph.becher@physik.uni-saarland.de

0003-6951/2015/106(22)/221103/4/$30.00 VC 2015 AIP Publishing LLC106, 221103-1
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refractive index of n¼ 2.4. The cavity is introduced by a

one-, three-, or seven-hole defect at the center, referred to as

M1-, M3-, or M7-cavity, respectively. For membrane prepa-

ration, a high purity synthetic diamond (<5 ppb nitrogen

concentration) was synthesized using microwave assisted

chemical vapor deposition. The as grown (001) single crystal

diamond was processed using standard diamond lapidary for

bulk material removal followed by scaife polishing to thin

the diamond to 10 lm. The membrane is bonded on a silicon

substrate via a spin-on-glass adhesion layer (hydrogen silses-

quioxane, Dow corning XR-1541). The silicon substrate has

been partially removed in order to obtain a free-standing dia-

mond membrane which is subsequently thinned to 220 nm

using reactive ion etching in an oxygen plasma and patterned

with an array of air holes using focused ion beam milling

with 30 keV-Gaþ ions.17 As a final step, the sample is

annealed at 800 �C for 2 h in vacuum and is thoroughly

cleaned in a boiling mixture of nitric, sulfuric, and perchloric

acid.

The lattice constant a¼ 220–240 nm and air hole radii

R¼ 80–83 nm of the M1-, M3-, and M7-cavities are chosen

such that the resonant modes are close to the design wave-

length of 637 nm with experimental quality factors of

Q¼ 150–1200 and mode volumes of V � 1ðk=nÞ3. The hole

radii of the M3- and M7-cavity are uniform in size, whereas

the next neighbor holes around the M1-defect have been

displaced and reduced in size to optimize the cavity Q18 (cf.

Figs. 1(b) and 1(c)).

The fabricated structures are investigated using a home-

built confocal microscopy setup with a continuous-wave

532 nm excitation laser where the sample is mounted in a

continuous flow liquid-helium cryostat. The room tempera-

ture photoluminescence (PL) spectrum of the fabricated M1-

cavity (Fig. 1(d)) shows three pronounced cavity modes c1,

c2, and c3 at 653, 670, and 681 nm, respectively, but no

signature of NV emission in the ultrapure diamond material.

For deterministic creation of NV centers within the PhC

cavities, we first use an AFM to image the PhC structures

(cf. Fig. 1(c)). A small hole (diameter of <30 nm) drilled in

the AFM tip serves as an aperture for the ion beam that

allows for high resolution implantation10,11 of 15Nþ ions

with an energy of 5 keV at the cavities’ center at different

doses of 0.3–4.4� 1014 ions/cm2. The low ion energy is cho-

sen to achieve a high spatial resolution of <15 nm.11

According to Monte Carlo simulations (SRIM19), the aver-

age implantation depth of the 5 keV-nitrogen ions is 8 nm

with a small ion straggle of 3 nm. After implantation, the dia-

mond sample is annealed at 800 �C for 2 h in vacuum such

that lattice vacancies diffuse in the diamond host material

towards the implanted nitrogen ions to form optically active

NV centers. Finally, the sample is cleaned again in a boiling

acid mixture for 8 h in order to oxidize any graphite-like

residuals and to convert the NV centers to the negative

charge state.

Ensemble NV emission spectra taken at different refer-

ence spots implanted at high dose (5� 1014 ions/cm2) aside

the photonic structures reveal that up to 70% of the NV

centers are converted to their negative charge state after all

oxidation steps. In our analysis, we take into account the

PL intensities integrated in a spectral range of 20 nm around

the NV0 (k¼ 575 nm) and NV– zero-phonon line (ZPL)

(k¼ 637 nm) as well as varying detection efficiencies of our

spectrometer, different absorption,20 and quantum21 efficien-

cies of the two charge states. In the following, we refer to the

most abundant NV� center simply as NV center.

We verify the successful formation of NV centers within

PhC cavities using confocal spectroscopy at 10 K. Figure 2

shows the PL scan and spectra of the M1-cavity after nitrogen

ion implantation at the lowest dose of 3� 1013 ions/cm2.

Besides the three cavity modes c1, c2, and c3, a clear signature

of NV ZPLs around 637 nm is visible in the spectrum col-

lected at the M1-cavity center (black spectrum in Fig. 2(a)).

A zoom into the spectral region around 637 nm (Fig. 2(b))

reveals 3 6 1 narrow Gaussian-shaped lines with linewidths

of D�0 � 250 GHz. At low temperature, the linewidth is lim-

ited by spectral diffusion.22 Each line corresponds to the ZPL

of a single NV center that has been created upon ion implan-

tation and subsequent annealing. The implantation is solely

FIG. 2. Low-temperature spectroscopy after nanoimplantation into PhC cavities, extracted number of NV centers, and creation yield: (a) Inset: PL scan of the

M1-cavity after 5 keV-nitrogen ion implantation at the lowest dose of 3� 1013 ions/cm2 (area: 5� 5 lm2). The spectrum taken at the center of the PhC (black

line, position marked by white star in PL scan) clearly reveals signature of NV centers around 637 nm and three cavity modes c1, c2, and c3 at longer wave-

lengths, which are not present in the reference spectrum taken 1 lm off the cavity center (gray line, position marked by white dot in PL scan). (b) Detailed,

background corrected spectrum around 637 nm displays 3 6 1 distinct NV ZPLs with Gaussian lineshapes and linewidths of 250 GHz. Dots: measured data,

gray lines: Gaussian fits. (c) Number of created NV centers and their associated (d) production yield as a function of the applied dose upon 15Nþ ion implanta-

tion into M1, M3, and M7 PhC cavities.
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restricted to the cavity center. Reference spectra collected

1 lm off the cavity center (gray spectrum in Fig. 2(a)) do not

show any signature of NV ZPLs, which verifies the high spa-

tial resolution of the implantation process.

We determine the number of NV centers created within

each M1-, M3-, and M7-cavity that were implanted at vari-

ous ion doses by integrating the background corrected PL

signal in the spectral range of 637 6 8 nm and normalize it to

the average ZPL intensity of a single NV center. As dis-

played in Fig. 2(c), the number of produced NV centers

monotonically increases as a function of the applied implan-

tation dose. By dividing the number of NV centers by the

amount of implanted nitrogen ions, we obtain the NV crea-

tion yield shown in Fig. 2(d). For the ion energy of 5 keV,

we find a creation yield of 0:860:2% that is constant over

the whole range of implantation dose. The small creation

yield is within the range of experimental observations of

yields <0:1%23 to �25%,24 which strongly depend on

annealing and surface conditions. The creation yield is lim-

ited by loss of vacancies to the surface upon shallow implan-

tation and surface effects possibly shifting the NV center

charge state to NVþ. From Fig. 2(c), we deduce an optimal

dose of 1� 1013 ions/cm2 at an ion energy of 5 keV for deter-

ministic creation of one single optically active NV center.

In the following, we analyze the intensity enhancement

of the NV emission at the resonant wavelength of the M1-

cavity mode c1. Thereby, we take into account that the mode

c1 preferentially overlaps with the NV phonon side band

(PSB) and not with the ZPL. As the resonance wavelengths

and linewidths are known from the M1-cavity spectrum

(Fig. 1) prior to implantation, we can estimate the bare NV

emission (orange line in Fig. 3(a)) without cavity modes. By

comparing the integrated intensity of the cavity-enhanced

emission Ion (orange þ gray area in Fig. 3(b)) with the bare

spectrum Ioff (orange area), we find an experimental

enhancement factor of Ion=Ioff ¼ 1:24. Here, we solely focus

on the intensity increase by the dominant c1 mode and

disregard other modes c2 and c3. In addition the emission

efficiency into the cavity mode is b ¼ Ic1
on=Itot

on ¼ 0:31,

where Ic1
on is the emission channeled into mode c1 (pink area

in Fig. 3(c)) and Itot
on is the overall intensity (pinkþ gray area).

To relate the resonant intensity enhancement of the NV

PSB to a generalized Purcell factor F�, we adopt the master

equation model25,26 for broad-band emitter-cavity coupling.

In analogy to Albrecht et al.,25 the NV emission is modeled

as a multi-level system (inset in Fig. 3(a)). The model input

parameters are obtained from Lorentzian fits to the

uncoupled NV spectrum (Fig. 3(a)). Solving the master equa-

tion model, we compute the generalized Purcell factor

F�25,26 (Fig. 3(d)) and the associated emission factor b ¼
F�=ð1þ F�Þ (Fig. 3(e)) into the cavity when the resonant

mode c1 with Qc1
¼ 160 and Vc1

¼ 1:1 ðk=nÞ3 is tuned across

the modeled NV spectrum. The individual contributions of

the ZPL and PSBs to the total emitter-cavity coupling are

shown by the filled curves in Figs. 3(d) and 3(e). For simplic-

ity, our analysis assumes unity quantum efficiency and per-

fect spatial and orientational overlap of the two NV dipoles

with the cavity field. At the resonant wavelength kc1
¼ 653

nm of the M1-cavity mode (cf. Fig. 3(d)), we find a theoreti-

cal Purcell enhancement of 1þ F� ¼ 1:7 and an emission

efficiency b ¼ 0:42 that result in a theoretical intensity

increase Ion=Ioff ¼ ðð1þ F�Þ e1;2 cþ ð1� e1;2ÞcÞ=c ¼ 1:2,

considering that the c1 mode preferentially overlaps with the

first and second NV PSB with a relative contribution to the

total NV emission of e1;2 ¼ 0:29. These theoretical values

are in excellent agreement with our experiment. Purcell

enhancement and emission efficiency are limited by the

small cavity Q and the large pure dephasing rate. A cavity

mode with Q¼ 1000, tuned into resonance with the NV

ZPL, would give rise to a stronger Purcell enhancement and

an emission efficiency of >60%.

In conclusion, we have demonstrated high resolution crea-

tion of a small number of NV centers at the center of diamond-

based PhC cavities using collimated nanoimplantation of

FIG. 3. Spectrally resolved Purcell enhancement of the NV emission via coupling to the M1-cavity mode: (a) From the measured NV/M1-cavity spectrum

(black dots), the bare, uncoupled NV emission (orange line) is estimated. The bare spectrum is fitted with eight Lorentzians according to the (inset) multi-level

model of the NV center including one excited state jei and eight vibrational ground states jgii; i 2 ½0; 7�. The parameters are the transition rates ci, the pure

dephasing rate c�, and the relaxation rates ci;i�1 between vibrational ground state sublevels. (b) Experimental enhancement of the on-resonance NV intensity

Ion (orange þ gray) coupled to cavity mode c1 (disregarding modes c2 and c3) compared to the uncoupled case Ioff (orange). (c) Experimental emission effi-

ciency b defined as the ratio of the intensity Ic1
on (pink) channeled into cavity mode c1 to the total emission Itot

on (pink þ gray). Calculated (d) generalized Purcell

factor F� and (e) emission efficiency b as a function of cavity wavelength kc. The individual contributions of the ZPL and PSB to emitter-cavity coupling are

shown by the filled curves.
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nitrogen ions through a pierced AFM-tip. For an ion energy of

5 keV, we found a constant NV creation yield of 0.8%, inde-

pendent of implantation dose and cavity size. The lowest ion

dose of 3� 1013 ions/cm2 yielded 361 NV centers placed at

the center of a M1-cavity. The emitter-cavity coupling leads to

an intensity enhancement of Ion=Ioff ¼ 1:24 when the cavity

mode is in resonance with the NV PSB and an emission effi-

ciency into the cavity mode of b ¼ 0:31 which is in very good

agreement with theoretical predictions. From our experiment,

we deduce an optimal dose of 1� 1013 ions/cm2 for the tar-

geted creation of one single NV center within a PhC cavity.

The high resolution implantation of single NV centers within

PhC cavities demonstrated here is an essential step towards

scalable solid-state quantum networks27 or quantum repeaters28

based on NV nanocavity systems.
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