7 research outputs found
Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice.
International audienceMitochondrial dysfunction in skeletal muscle has been implicated in the development of type 2 diabetes. However, whether these changes are a cause or a consequence of insulin resistance is not clear. We investigated the structure and function of muscle mitochondria during the development of insulin resistance and progression to diabetes in mice fed a high-fat, high-sucrose diet. Although 1 month of high-fat, high-sucrose diet feeding was sufficient to induce glucose intolerance, mice showed no evidence of mitochondrial dysfunction at this stage. However, an extended diet intervention induced a diabetic state in which we observed altered mitochondrial biogenesis, structure, and function in muscle tissue. We assessed the role of oxidative stress in the development of these mitochondrial abnormalities and found that diet-induced diabetic mice had an increase in ROS production in skeletal muscle. In addition, ROS production was associated with mitochondrial alterations in the muscle of hyperglycemic streptozotocin-treated mice, and normalization of glycemia or antioxidant treatment decreased muscle ROS production and restored mitochondrial integrity. Glucose- or lipid-induced ROS production resulted in mitochondrial alterations in muscle cells in vitro, and these effects were blocked by antioxidant treatment. These data suggest that mitochondrial alterations do not precede the onset of insulin resistance and result from increased ROS production in muscle in diet-induced diabetic mice
Mitochondrial alterations result in stress oxydants in the skeletal muscle of diabetic mice
Poster P10International audienc
A p.C217R Mutation in Fibulin-5 from Cutis Laxa Patients Is Associated with Incomplete Extracellular Matrix Formation in a Skin Equivalent Model
International audienceCutis laxa (CL) is a rare genodermatosis, which is clinically and genetically heterogeneous. It is characterized by redundant, loose, sagging, and inelastic skin. In a consanguineous family from Lebanon with autosomal-recessive transmission, we identified a homozygous missense mutation (c.649T --> C; p.C217R) in the fibulin-5 gene (FBLN5), which was, to our knowledge, previously unreported. Small skin biopsies were performed, which permitted isolation of skin fibroblasts harboring this FBLN5 mutation; they exhibited a deficit in cell growth. A CL skin equivalent (CL-SE) model compared with control SE was successfully developed to define the behavior of CL fibroblasts in a three-dimensional model. There was increased cell death and a global extracellular matrix deficiency in the dermis of this CL-SE model, and a low level of the main elastic fiber expression. There was no basement membrane evident at the ultrastructural level, and type-VII collagen could not be detected at the histological level. This model reproduced some defects of the extracellular matrix and highlighted other defects, which occurred at the time of the basement membrane formation, which were not evident in skin from patients. This CL-SE model could be adapted to screen for therapeutically active molecules
Staphylococcus aureus Panton-Valentine leukocidin directly targets mitochondria and induces Bax-independent apoptosis of human neutrophils
Panton-Valentine leukocidin (PVL) is a pore-forming toxin secreted by Staphylococcus aureus that has recently been associated with necrotizing pneumonia. In the present study, we report that in vitro, PVL induces polymorphonuclear cell death by necrosis or by apoptosis, depending on the PVL concentration. PVL-induced apoptosis was associated with a rapid disruption of mitochondrial homeostasis and activation of caspase-9 and caspase-3, suggesting that PVL-induced apoptosis is preferentially mediated by the mitochondrial pathway. Polymorphonuclear cell exposure to PVL leads to mitochondrial localization of the toxin, whereas Bax, 1 of the 2 essential proapoptotic members of the Bcl-2 family, was still localized in the cytosol. Addition of PVL to isolated mitochondria induced the release of the apoptogenic proteins cytochrome c and Smac/DIABLO. Therefore, we suggest that PVL, which belongs to the pore-forming toxin family, could act at the mitochondrion level by creating pores in the mitochondrial outer membrane. Furthermore, LukS-PV, 1 of the 2 components of PVL, was detected in lung sections of patients with necrotizing pneumonia together with DNA fragmentation, suggesting that PVL induces apoptosis in vivo and thereby is directly involved in the pathophysiology of necrotizing pneumonia