630 research outputs found
Development Of Disease Caused By The Parasite, Perkinsus-Marinus And Defense-Related Hemolymph Factors In 3 Populations Of Oysters From The Chesapeake Bay, Usa
The development of infection caused by the protozoan parasite, Perkinsus marinus (Dermo) and some specific potential defense-related cellular and humoral components in oysters collected from three geographic areas, Deepwater Shoal of James River (DW), Wachapreague (WP), and Mobjack Bay (MJ) were examined over time. Oysters were maintained in estuarine water (salinity = 20 ppt) or in water at a salinity similar to the ambient salinity of the collection sites. Oysters were sampled at the initiation of the experiment (day 0), day 35, and day 100 to determine defense-related parameters and disease prevalence and intensity. All populations experienced a significant increase in P. marinus infection prevalence and intensity from the initiation of the experiment to the termination of the study. Oyster mortality differed between oyster populations. None of the DW oysters perished while cumulative mortalities for WP at 32 ppt and 20 ppt and MJ oysters were respectively, 23, 25, and 35%. The experimental oyster populations demonstrated significant differences with respect to cellular and humoral defense-related variables. As the study progressed, the mean number of total hemocytes declined in the WP and MJ populations and increased in the DW population. The percentage of granulocytes in DW oysters was consistently higher than other populations. DW oysters also had the highest concentrations of protein and lysozyme. This pattern persisted throughout the experimental period. Oyster condition index significantly decreased during the course of the study in all populations except the DW oysters at 10 ppt. Results suggest that the increase of hemocyte number and higher percentage of granulocytes, and lysozyme concentration in DW oysters may have contributed to the high (100%) survival rate of this population. Salinity may have affected disease development. Disease prevalence and intensity tended to be lower in the WP oysters maintained at low salinity than those maintained at high salinity. In the DW population, unexpectedly, oysters maintained at 20 ppt had lower infection prevalence and intensity than oysters maintained at 10 ppt. Salinity induced, to some extent, changes in certain hemolymph components: lysozyme concentration tended to be higher in oysters maintained at low salinity than those maintained at high salinity. Increase in percentage of granulocytes was also observed in WP oysters after transferring to a salinity lower than ambient salinity
La culture du platane hybride en Catalogne espagnole
En Catalogne espagnole le taillis de platane couvre 5000 ha. Son bois présente des qualités et des caractéristiques voisines du hêtre. Il est concurrencé depuis quelques années par le hêtre français. De ce fait les propriétaires catalans auraient tendance à le remplacer par des espèces forestières plus productives comme le peuplier et le pin radiata. En France, le platane intéresse les forestiers du Sud Ouest et les forestiers languedociens
Causes de la régression de certaines plantes herbacées dans la zone pastorale du Niger au cours des dernières années : compte-rendu final d'ATP/CIRAD
Un protocole de suivi très détaillé de l'évolution de la composition du tapis herbacé est mis en place dans quatre sites du Sahel (Niger). Le suivi effectué durant deux saisons des pluies (1988 et 1989) montre que la dynamique observée résulte d'interactions très complexes de facteurs parmi lesquels la distribution des pluies semble l'un des plus importants. Un essai de dénombrement des semences présentes dans le sol et d'évaluation de leur capacité germinative ne donne pas de résultats significatifs
Combining multivariate genomic approaches to elucidate the comorbidity between autism spectrum disorder and attention deficit hyperactivity disorder
BACKGROUND:
Attention deficit hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) are two highly heritable neurodevelopmental disorders. Several lines of evidence point towards the presence of shared genetic factors underlying ASD and ADHD. We conducted genomic analyses of common risk variants (i.e. single nucleotide polymorphisms, SNPs) shared by ASD and ADHD, and those specific to each disorder.
METHODS:
With the summary data from two GWAS, one on ASD (N = 46,350) and another on ADHD (N = 55,374) individuals, we used genomic structural equation modelling and colocalization analysis to identify SNPs shared by ASD and ADHD and SNPs specific to each disorder. Functional genomic analyses were then conducted on shared and specific common genetic variants. Finally, we performed a bidirectional Mendelian randomization analysis to test whether the shared genetic risk between ASD and ADHD was interpretable in terms of reciprocal relationships between ASD and ADHD.
RESULTS:
We found that 37.5% of the SNPs associated with ASD (at p < 1e-6) colocalized with ADHD SNPs and that 19.6% of the SNPs associated with ADHD colocalized with ASD SNPs. We identified genes mapped to SNPs that are specific to ASD or ADHD and that are shared by ASD and ADHD, including two novel genes INSM1 and PAX1. Our bidirectional Mendelian randomization analyses indicated that the risk of ASD was associated with an increased risk of ADHD and vice versa.
CONCLUSIONS:
Using multivariate genomic analyses, the present study uncovers shared and specific genetic variants associated with ASD and ADHD. Further functional investigation of genes mapped to those shared variants may help identify pathophysiological pathways and new targets for treatment
Survival and growth of triploid eastern oysters, Crassostrea virginica, produced from wild diploids collected from low-salinity areas
Triploid Eastern oysters have been reported to suffer greater mortalities than diploids when exposed to low-salinity (\u3c5) conditions in the U.S. Gulf of Mexico and Atlantic estuaries. As such, the effect of broodstock parentage was investigated on the low-salinity tolerance of triploid progeny produced by mating diploid females (collected from three Louisiana estuaries differing in salinity regimes) with male tetraploids at two hatcheries. Diploid crosses were also produced using the wild broodstocks to verify expected differences in low-salinity tolerance among diploid progeny and between ploidy levels. All progeny were deployed at low and moderate-salinity (averages of 9.3 and 19.4) field sites to monitor monthly growth and mortality. Sex ratio, gametogenic stage, gonad-to-body ratio, condition index, and Perkinsus marinus infection were also measured periodically at both field sites Although high triploid mortality at the low-salinity site prevented complete analysis, results indicated that diploid parentage had little effect on triploid survival at low salinity. Broodstock parentage affected diploid mortality and growth, although results did not match with predictions made based on historical salinity at broodstock collection sites. Ploidy level had the largest effect on triploid survival and growth followed by the hatchery site where the oysters were produced
Evaluation of the resistance of CAC and BFSC mortars to biodegradation : laboratory test approach
Biodeterioration of cementitious materials in sewer networks is a major concern for health and economic reasons. Essentially, it is due to the biological oxidation of H2S into H2SO4 leading to a local progressive dissolution of the cementitious matrix and the precipitation of expansive products likely to provoke cracks. However, it is widely known that CAC has a better performance in such environments but the mechanisms are not very well understood. Nevertheless, previous studies focused mainly on measuring the mass loss of the specimens accompanied with little information on the chemical alteration of the cementitious matrix. This study aims to compare the performance of CAC and BFSC mortars in sewer conditions using laboratory test (BAC-test). Leaching kinetics were evaluated by concentrations measurements of cementitious cations in the leached solutions and of sulphate production by the microorganisms. Moreover, SEM observations coupled with EDS analyses allowed the identification of the chemical alteration of the cementitious matrix
Model based optimization criteria for the generation of deep compressive residual stress fields in high elastic limit metallic alloys by ns-laser shock processing
Laser Shock Processing (LSP) is based on the application of a high intensity pulsed Laser beam (IN1 GW/cm2; τb50 ns) on a metallic target forcing a sudden vaporization of its surface into a high temperature and density plasma that immediately develops inducing a shock wave propagating into the material. The main acknowledged advantages of LSP consist on its capability of inducing a relatively deep compression residual stresses field into metallic alloy pieces allowing an improved mechanical behavior, explicitly, the life improvement of the treated specimens against wear, crack growth and stress corrosion cracking. Due to these specific advantages, Laser Shock Processing is considered as a competitive alternative technology to classical treatments for improving fatigue, corrosion cracking and wear resistance of metallic materials, and is being developed as a practical process amenable to production technology. In this paper, a model based systematization of process optimization criteria and a practical assessment on the real possibilities of the technique is presented along with practical results at laboratory scale on the application of LSP to characteristic high elastic limit metallic alloys, showing the induced residual stresses fields and the corresponding results on mechanical properties improvement induced by the treatment. The homogeneity of the residual stress fields distribution following the laser treatment spatial density will be specially analyzed
- …