16 research outputs found
A regulatory role of polycystin-1 on cystic fibrosis transmembrane conductance regulator plasma membrane expression.
Autosomal dominant polycystic kidney disease (ADPKD) is caused by genetic mutations in either PKD1 or PKD2, the genes that encode polycystin-1 (PC-1) and polycystin-2 (PC-2), respectively. ADPKD is characterized by the formation of multiple, progressive, fluid-filled renal cysts. To elucidate the mechanism of fluid secretion by ADPKD cysts, we examined the effect of PC-1 on the plasma membrane expression of cystic fibrosis transmembrane conductance regulator (CFTR), a key Cl(-) secretory protein. Five stably transfected MDCK lines were used in this study: two transfected with empty vector (control cells) and three expressing human PC-1 (PC-1 cells). The cAMP-induced endogenous short circuit currents (I(sc)) were smaller in PC-1 cells than in control cells. Compared to control cells, PC-1 cells transiently expressing pEGFP-CFTR showed significant reduction of whole cell cAMP-activated Cl(-) currents. Cell surface biotinylation experiments also indicated a reduction in surface expression of CFTR in PC-1 cells compared to control. Furthermore, studies using CHO cells transiently expressing PC-1 and CFTR suggest the importance of the PC-1 COOH-terminus in the observed reduction of CFTR plasma membrane expression. No differences in either endogeneous K(+) currents or P2Y receptor responses were observed between PC-1 and control cells, indicating the specificity of PC-1's action. These results indicate that PC-1 selectively maintains low cell surface expression of CFTR. Moreover, these findings suggest that the malfunction of PC-1 enhances plasma membrane expression of CFTR, thus causing abnormal Cl(-)secretion into the cyst lumen
Ion channels and transporters keep ideas flowing
Peer reviewe
Iodide Binding in Sodium-Coupled Cotransporters
Several apical iodide translocation
pathways have been proposed
for iodide efflux out of thyroid follicular cells, including a pathway
mediated by the sodium-coupled monocarboxylate transporter 1 (SMCT1),
which remains controversial. Herein, we evaluate structural and functional
similarities between SMCT1 and the well-studied sodium-iodide symporter
(NIS) that mediates the first step of iodide entry into the thyroid.
Free-energy calculations using a force field with electronic polarizability
verify the presence of a conserved iodide-binding pocket between the
TM2, TM3, and TM7 segments in hNIS, where iodide is coordinated by
Phe67, Gln72, Cys91, and Gln94. We demonstrate the mutation of residue
Gly93 of hNIS to a larger amino acid expels the side chain of a critical
tryptophan residue (Trp255) into the interior of the binding pocket,
partially occluding the iodide binding site and reducing iodide affinity,
which is consistent with previous reports associating mutation of
this residue with iodide uptake deficiency and hypothyroidism. Furthermore,
we find that the position of Trp255 in this hNIS mutant mirrors that
of Trp253 in wild-type hSMCT1, where a threonine (Thr91) occupies
the position homologous to that occupied by glycine in wild-type hNIS
(Gly93). Correspondingly, mutation of Thr91 to glycine in hSMCT1 makes
the pocket structure more like that of wild-type hNIS, increasing
its iodide affinity. These results suggest that wild-type hSMCT1 in
the inward-facing conformation may bind iodide only very weakly, which
may have implications for its ability to transport iodide