54 research outputs found

    Effect of nanosize BaZrO3 inclusions on vortex parameters in YBaCuO

    Full text link
    We report on the field dependence of the microwave complex resistivity data in YBa2_2Cu3_3O7−x_{7-x}/BaZrO3_3 films grown by PLD at various BaZrO3_3 content. The data, analyzed within a recently developed general framework for the mixed-state microwave response of superconductors, yield the field dependence of the fluxon parameters such as the vortex viscosity and the pinning constant. We find that pinning undergoes a change of regime when the BaZrO3_3 content in the target increases from 2.5 mol.% to 5 mol.%. Simultaneously, the vortex viscosity becomes an increasing function of the applied magnetic field. We propose a scenario in which flux lines are pinned as bundles, and a crossover from dilute point pins to dense c-axis correlated defects takes place between 2.5 and 5 mol.% in the BZO concentration. Our data are inconsistent with vortices occupying mainly the BaZrO3_3 sites at low fields, and suggest instead that vortices occupy both BaZrO3_3 sites and interstitials in the YBa2_2Cu3_3O7−x_{7-x} matrix, even at low fields.Comment: Presented at EUCAS 2009, to be published in J. Phys.:Conf. Serie

    Activated biochars as sustainable and effective supports for hydrogenations

    Get PDF
    Activated biochars were obtained from pyrolysis and CO2-physical activation of four different biomasses including tannery shaving waste (T), vine wood waste (W), barley waste (B) and Sargassum, brown macroalgae of Venice lagoon (A). The potential of obtained carbonaceous materials as the supports of Ni,Al catalysts was investigated in levulinic acid (LA) conversion to γ-valerolactone (GVL) as a model hydrogenation reaction. Al-containing species as the Lewis acid sites for the dehydration step were incorporated to the supports using wet impregnation or precipitation. Ni as a hydrogenation active phase was added to the supports via wet impregnation. Biochar-based supports and catalysts were characterized by AAS, elemental analysis, FTIR, N2 physisorption, XRD, SEM, EDS, TEM, He-TPD, NH3-TPD and TPR techniques. The catalysts were tested for LA hydrogenation to GVL in a batch system and aqueous medium. The results showed that Ni supported on activated biochar was not active due to a lack of Lewis acid sites for dehydration. Precipitated Al-containing species on the biochar-based supports demonstrated a better catalytic performance in the reaction compared to impregnated one because of different interactions with the support and Ni species. Among different supports, the activated biochars obtained from T and W acted as the best ones. A higher catalytic efficiency was strongly influenced by the chemical (aromaticity and stability, presence of N,O-doped and functional groups), textural (the porous texture and surface area), and morphological (higher dispersion of active phases) properties of activated biochars obtained from different biomasses with different natures

    Fluorescent and Electron-Dense Green Color Emitting Nanodiamonds for Single-Cell Correlative Microscopy

    Get PDF
    Correlative light and electron microscopy (CLEM) is revolutionizing how cell samples are studied. CLEM provides a combination of the molecular and ultrastructural information about a cell. For the execution of CLEM experiments, multimodal fiducial landmarks are applied to precisely overlay light and electron microscopy images. Currently applied fiducials such as quantum dots and organic dye-labeled nanoparticles can be irreversibly quenched by electron beam exposure during electron microscopy. Generally, the sample is therefore investigated with a light microscope first and later with an electron microscope. A versatile fiducial landmark should offer to switch back from electron microscopy to light microscopy while preserving its fluorescent properties. Here, we evaluated green fluorescent and electron dense nanodiamonds for the execution of CLEM experiments and precisely correlated light microscopy and electron microscopy images. We demonstrated that green color emitting fluorescent nanodiamonds withstand electron beam exposure, harsh chemical treatments, heavy metal straining, and, importantly, their fluorescent properties remained intact for light microscopy

    Experimental study of magneto-superconductor RuSr2Eu1.5Ce0.5Cu2O10: Effect of Mo doping on magnetic behavior and Tc variation

    Get PDF
    Mo doped ruthenocuprates Ru1-xMoxSr2Eu1.5Ce0.5Cu2O10 are synthesized for x = 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0, and their magnetic and superconducting properties are studied. It has been found that the magnetic transition temperature TZFCpeak, which corresponds to the appearance of weak ferromagnetic effect, decreases from its value of 75 K for x = 0.0 to 22 K, 25 K and 18 K, respectively for the x = 0.2, 0.4 and 0.6 samples. Another finding is that the magnetic susceptibility reduces at TZFCpeak by a factor of about 6, 85 and 413 for x = 0.2, 0.4, and 0.6 respectively. The samples of x = 0.8 and 1.0 are found to have no magnetic or superconducting effects. The values of the superconducting transition temperature are obtained from the resistivity versus temperature data. An important result is that Tc increases by 4.5 K and 7.0 K for x = 0.2 and 0.4 respectively, and then decreases by 17 K for x = 0.6. The observed variation of Tc with x has been explained in terms of a theory which combines the effects of weakening magnetic behavior and reducing carrier concentration in a phenomenological manner. The resulting theory is found to provide a good agreement with the observed value of Tc.Comment: 14 pages with Text + Figs. To Appear in PHYS. REV. B, Ist Jan. 2006 issu

    Cell Volume (3D) Correlative Microscopy Facilitated by Intracellular Fluorescent Nanodiamonds as Multi-Modal Probes

    Get PDF
    Three-dimensional correlative light and electron microscopy (3D CLEM) is attaining popularity as a potential technique to explore the functional aspects of a cell together with high-resolution ultrastructural details across the cell volume. To perform such a 3D CLEM experiment, there is an imperative requirement for multi-modal probes that are both fluorescent and electron-dense. These multi-modal probes will serve as landmarks in matching up the large full cell volume datasets acquired by different imaging modalities. Fluorescent nanodiamonds (FNDs) are a unique nanosized, fluorescent, and electron-dense material from the nanocarbon family. We hereby propose a novel and straightforward method for executing 3D CLEM using FNDs as multi-modal landmarks. We demonstrate that FND is biocompatible and is easily identified both in living cell fluorescence imaging and in serial block-face scanning electron microscopy (SB-EM). We illustrate the method by registering multi-modal datasets.Peer reviewe

    Magnetism, Upper critical field and Thermoelectric power of Magneto-Superconductor RuSr2Eu1.5Ce0.5Cu2O10

    Full text link
    Magnetic susceptibility, M-H plot, magnetoresistance and thermoelectric power of the RuSr2Eu1.5Ce0.5Cu2O10 superconductor are measured. Values of the magnetic transition temperature Tmag, superconductivity transition temperature Tc, upper critical field Hc2, chemical potential mu, and energy width for electric conduction W(sigma) are obtained from these measurements. It has been found that Tmag = 140 K, Tc = 25 K (33 K) from susceptibility (magnetoresistance) measurements, Hc2 (0) > 32 T, mu = 8 meV, and W(sigma) = 58.5 meV. These values are compared with other ruthenate superconductors, and resulting physical information is discussed.Comment: 18 pages of TEXT + FIGS. To appear in - J. PHYS. COND. MATT. (2006

    One-Pot Transformation of Citronellal to Menthol Over H-Beta Zeolite Supported Ni Catalyst: Effect of Catalyst Support Acidity and Ni Loading

    Get PDF
    Citronellal was converted to menthol in a one-pot approach using H-Beta zeolite-based Ni catalyst in a batch reactor at 80 Â°C, under 20 bar of total pressure. The effects of H-Beta acidity (H-Beta-25 with the molar ratio SiO2/Al2O3 = 25 and H-Beta-300 with SiO2/Al2O3 = 300) and Ni loading (5, 10 and 15 wt %) on the catalytic performance were investigated. Ni was impregnated on H-Beta support using the evaporation-impregnation method. The physico-chemical properties of the catalysts were characterized by XRD, SEM, TEM, ICP-OES, N2 physisorption, TPR, and pyridine adsorption–desorption FTIR techniques. Activity and selectivity of catalysts were strongly affected by the Brønsted and Lewis acid sites concentration and strength, Ni loading, its particle size and dispersion. A synergetic effect of appropriate acidity and suitable Ni loading in 15 wt.% Ni/H-Beta-25 catalyst led to the best performance giving 36% yield of menthols and 77% stereoselectivity to (±)-menthol isomer at 93% citronellal conversion. Moreover, the catalyst was successfully regenerated and reused giving similar activity, selectivity and stereoselectivity to the desired (±)-menthol isomer as the fresh one. Graphical Abstract: [Figure not available: see fulltext.

    Effect of the Preparation of Pt-Modified Zeolite Beta-Bentonite Extrudates on Their Catalytic Behavior in n-Hexane Hydroisomerization

    Get PDF
    Four different types of shaped catalysts with controlled deposition of platinum and the same composition were prepared by extrusion of beta zeolite agglomerated with bentonite as an aluminosilicate clay binder. The catalysts were characterized using mechanical strength tests; scanning electron microscopy for morphology; transmission electron microscopy for porosity and periodicity; nitrogen physisorption for surface area, pore volume, and pore size distribution; and Fourier transform infrared spectroscopy using pyridine as a probe molecule to elucidate the presence, strength, and amount of Bronsted and Lewis acid sites. Elemental analysis was carried out using energy-dispersive X-ray microanalysis. Activity and selectivity of catalysts in the isomerization of n-hexane were evaluated using a fixed bed reactor at 200-350 degrees C. At low temperature, the performance of metal/acid bifunctional shaped catalysis was strongly affected by the metal-to-acid site ratio. This ratio and the total acidity were strongly influenced by the preparation method of the shaped catalysts, while the textural properties were comparable. The highest conversion of n-hexane and selectivity to C-6 isomers (comprising all branched isomers, such as methyl pentane and dimethylbutane) was obtained with extrudates prepared via in situ synthesis with platinum located on the zeolite. The extrudates prepared in this way have the highest metal-to-acid site ratio and their closest proximity, albeit the lowest mechanical strength

    Anomalous lattice expansion of RuSr2Eu1.5Ce0.5Cu2O10(Ru-1222) magneto superconductor: A low temperature X-ray diffraction study

    Full text link
    This is the first report of the observation of the onset of excess volume and also of the strain along the a-axis near the magnetic ordering temperature in Ru-1222 superconductor, and indicates a coupling between the lattice and the magnetism in this system. Magnetization, magneto transport and thermoelectric power measurements being carried out on the same sample are also reported.Comment: 15 Pages Text Plus Figs. Physica C (2006) accepte
    • …
    corecore