254 research outputs found

    From dissidents to collaborators: the resurgence and demise of the Russian critical intelligentsia since 1985

    Get PDF
    This paper investigates the multifaceted universe of Russian intelligentsia and addresses the following, troubling, questions: What caused pro-democratic political dissent to weaken among the intelligentsia in the aftermath of perestrojka? Why has the young generation of Russian public intellectuals undergone a radical metamorphosis of their value system and plunged into political passivity and conformism? Freedom has historically been a prima facie value for the Russian liberal intelligentsia. By the mid-1990s, however, much of the intelligentsia came to be associated not with advocacy of individual liberty and human rights but with the failure of liberal democracy in Russia. This paper focuses on how the generation of the 1960s liberal intelligentsia, or shestidesjatniki, who played an active role during perestrojka, gave way to a generation of the "sons,” who, characterized as Western-style intellectuals, became spin doctors and political technologists, replacing the original ideals and high moral stance of their predecessors with nihilistic nonchalance. It is argued that the demise of dissent in post-Soviet Russia derives from the younger generation of intellectuals' view of the attainment of political power by the generation of shestidesjatniki during perestrojka and the first El'tsin term as the latter's moral fall and abandonment of the intelligentsia's traditional role as an outside critic of the stat

    Nitric oxide is an essential negative regulator of cell proliferation in Xenopus brain

    Get PDF
    Mechanisms controlling the transition of a neural precursor cell from proliferation to differentiation during brain development determine the distinct anatomical features of the brain. Nitric oxide (NO) may mediate such a transition, because it can suppress DNA synthesis and cell proliferation. We cloned the gene encoding the neuronal isoform of Xenopus NO synthase (XNOS) and found that in the developing brain of Xenopus tadpoles, a zone of XNOS-expressing cells lies adjacent to the zone of dividing neuronal precursors. Exogenous NO, supplied to the tadpole brain in vivo, decreased the number of proliferating cells and the total number of cells in the optic tectum. Conversely, inhibition of NOS activity in vivo increased the number of proliferating cells and the total number of cells in the optic tectum. NOS inhibition yielded larger brains with grossly perturbed organization. Our results indicate that NO is an essential negative regulator of neuronal precursor proliferation during vertebrate brain development

    Nitric Oxide Coordinates Cell Proliferation and Cell Movements During Early Development of Xenopus

    Get PDF
    The establishment of a vertebrate body plan during embryogenesis is achieved through precise coordination of cell proliferation and morphogenetic cell movements. Here we show that nitric oxide (NO) suppresses cell division and facilitates cell movements during early development of Xenopus, such that inhibition of NO synthase (NOS) increases proliferation in the neuroectoderm and suppresses convergent extension in the axial mesoderm and neuroectoderm. NO controls cell division and cell movement through two separate signaling pathways. Both rely on RhoA-ROCK signaling but can be distinguished by the involvement of either guanylate cyclase or the planar cell polarity regulator Dishevelled. Through the cGMP-dependent pathway, NO suppresses cell division by negatively regulating RhoA and controlling the nuclear distribution of ROCK and p21WAF1. Through the cGMP-independent pathway, NO facilitates cell movement by regulating the intracellular distribution and level of Dishevelled and the activity of RhoA, thereby controlling the activity of ROCK and regulating actin cytoskeleton remodeling and cell polarization. Concurrent control by NO helps ensure that the crucial processes of cell proliferation and morphogenetic movements are coordinated during early development

    Nitric oxide, cell multiplication, and cell survival

    Get PDF
    Arrest of cell division is crucial for cells to enter a program of terminal differentiation. In the developing organ or a differentiating tissue, growth arrest defines roughly the size of the cellular population that is further committed to become a domain of differentiated cells. Eventually, the balance between the number of cell divisions and the extent of subsequent programmed cell death determines the final size of a domain, a tissue, or an organ (for review, see Bryant and Simpson 1984; Raff 1992, 1996). Mitogenesis, cytostasis, and survival of neuronal cells can be induced and maintained by the same or by different growth or trophic factors. The signaling pathways that coordinate proliferation, growth arrest, and survival of cells and groups of cells in developing organisms are not known, but they probably involve as yet undetermined inter- and intra-cellular second messenger molecules

    Regulation of Organelle Movement in Melanophores by Protein Kinase A (PKA), Protein Kinase C (PKC), and Protein Phosphatase 2A (PP2A)

    Get PDF
    We used melanophores, cells specialized for regulated organelle transport, to study signaling pathways involved in the regulation of transport. We transfected immortalized Xenopus melanophores with plasmids encoding epitope-tagged inhibitors of protein phosphatases and protein kinases or control plasmids encoding inactive analogues of these inhibitors. Expression of a recombinant inhibitor of protein kinase A (PKA) results in spontaneous pigment aggregation. α-Melanocyte-stimulating hormone (MSH), a stimulus which increases intracellular cAMP, cannot disperse pigment in these cells. However, melanosomes in these cells can be partially dispersed by PMA, an activator of protein kinase C (PKC). When a recombinant inhibitor of PKC is expressed in melanophores, PMA-induced pigment dispersion is inhibited, but not dispersion induced by MSH. We conclude that PKA and PKC activate two different pathways for melanosome dispersion. When melanophores express the small t antigen of SV-40 virus, a specific inhibitor of protein phosphatase 2A (PP2A), aggregation is completely prevented. Conversely, overexpression of PP2A inhibits pigment dispersion by MSH. Inhibitors of protein phosphatase 1 and protein phosphatase 2B (PP2B) do not affect pigment movement. Therefore, melanosome aggregation is mediated by PP2A

    Altered Hippocampal Neurogenesis and Amygdalar Neuronal Activity in Adult Mice with Repeated Experience of Aggression

    Get PDF
    Repeated experience of winning in a social conflict setting elevates levels of aggression and may lead to violent behavioral patterns. Here, we use a paradigm of repeated aggression and fighting deprivation to examine changes in behavior, neurogenesis, and neuronal activity in mice with positive fighting experience. We show that for males, repeated positive fighting experience induces persistent demonstration of aggression and stereotypic behaviors in daily agonistic interactions, enhances aggressive motivation, and elevates levels of anxiety. When winning males are deprived of opportunities to engage in further fights, they demonstrate increased levels of aggressiveness. Positive fighting experience results in increased levels of progenitor cell proliferation and production of young neurons in the hippocampus. This increase is not diminished after a fighting deprivation period. Furthermore, repeated winning experience decreases the number of activated (c-fos-positive) cells in the basolateral amygdala and increases the number of activated cells in the hippocampus; a subsequent no-fight period restores the number of c-fos-positive cells. Our results indicate that extended positive fighting experience in a social conflict heightens aggression, increases proliferation of neuronal progenitors and production of young neurons in the hippocampus, and decreases neuronal activity in the amygdala; these changes can be modified by depriving the winners of the opportunity for further fights

    A novel long non-coding natural antisense RNA is a negative regulator of Nos1 gene expression

    Get PDF
    Long non-coding natural antisense transcripts (NATs) are widespread in eukaryotic species. Although recent studies indicate that long NATs are engaged in the regulation of gene expression, the precise functional roles of the vast majority of them are unknown. Here we report that a long NAT (Mm-antiNos1 RNA) complementary to mRNA encoding the neuronal isoform of nitric oxide synthase (Nos1) is expressed in the mouse brain and is transcribed from the non-template strand of the Nos1 locus. Nos1 produces nitric oxide (NO), a major signaling molecule in the CNS implicated in many important functions including neuronal differentiation and memory formation. We show that the newly discovered NAT negatively regulates Nos1 gene expression. Moreover, our quantitative studies of the temporal expression profiles of Mm-antiNos1 RNA in the mouse brain during embryonic development and postnatal life indicate that it may be involved in the regulation of NO-dependent neurogenesis

    Nitric Oxide Is an Essential Mediator for Neuronal Differentiation of Rat Primary Cortical Neuron Cells

    Get PDF
    Nitric oxide (NO) regulates proliferation, differentiation and survival of neurons. Although NO is reported to involve in NGF-induced differentiation of PC12 cells, the role of NO has not been characterized in primary neuron cells. Therefore, we investigated the role of NO in neuronal differentiation of primary cortical neuron cells. Primary cortical neuron cells were prepared from rat embryos of embryonic day 18 and treated with NMMA (NOS inhibitor) or PTIO (NO scavenger). Neurite outgrowth of neuron cells was counted and the mRNA levels of p21, p27, c-jun and c-myc were measured by RT-PCR. Neurite outgrowth of primary cortical neuron cells was inhibited a little by NOS inhibitor and completely by NO scavenger. The mRNA levels of p21 and p27, differentiation-induced growth arrest genes were increased during differentiation, but they were decreased by NOS inhibitor or NO scavenger. On the other hand, the level of c-jun mRNA was not changed and the level of c-myc mRNA was increased during differentiation differently from previously reported. The levels of these mRNA were reversed in NOS inhibitor- or NO scavenger-treated cells. The level of nNOS protein was not changed but NOS activity was inhibited largely by NOS inhibitor or NO scavenger. These results suggest that NO is an essential mediator for neuronal differentiation of primary cortical neuron cells

    Schistosoma mansoni : use of a fluorescent indicator to detect nitric oxide and related species in living parasites

    Get PDF
    Author Posting. © The Authors, 2005. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Experimental Parasitology 113 (2006): 130-133, doi:10.1016/j.exppara.2005.12.013.Nitric oxide (NO) is synthesized enzymatically by nitric oxide synthase (NOS). Several groups have previously presented evidence for NOS activity and immunoreactivity in several parasitic platyhelminths, including schistosomes. Here, we use 4,5-diaminofluorescein-2 diacetate (DAF-2 DA), a fluorescent indicator of NO, to detect NO in living schistosomes. In adult worms, DAF-2 fluorescence is found selectively in epithelial-like cells. Fluorescence increases when worms are incubated in L-arginine, the precursor of NO synthesis, and decreases dramatically in the presence of the NOS inhibitor NG-nitro-L-arginine methyl ester (L-NAME), indicating that predicted NO release may be NOS-dependent, and that enzymatic NO signaling pathways may play an important role in schistosome physiology.This work was supported by NIH grant NS 39103 and NSF grants 0304569 (LLM), and NIH grant AI 40522 and the Neal Cornell Research Fund at the Marine Biological Laboratory (RMG)

    nNOS regulates ciliated cell polarity, ciliary beat frequency, and directional flow in mouse trachea.

    Get PDF
    Clearance of the airway is dependent on directional mucus flow across the mucociliary epithelium, and deficient flow is implicated in a range of human disorders. Efficient flow relies on proper polarization of the multiciliated cells and sufficient ciliary beat frequency. We show that NO, produced by nNOS in the multiciliated cells of the mouse trachea, controls both the planar polarity and the ciliary beat frequency and is thereby necessary for the generation of the robust flow. The effect of nNOS on the polarity of ciliated cells relies on its interactions with the apical networks of actin and microtubules and involves RhoA activation. The action of nNOS on the beat frequency is mediated by guanylate cyclase; both NO donors and cGMP can augment fluid flow in the trachea and rescue the deficient flow in nNOS mutants. Our results link insufficient availability of NO in ciliated cells to defects in flow and ciliary activity and may thereby explain the low levels of exhaled NO in ciliopathies
    corecore