92 research outputs found

    Subthreshold characteristics of pentacene field-effect transistors influenced by grain boundaries.

    Get PDF
    Grain boundaries in polycrystalline pentacene films significantly affect the electrical characteristics of pentacene field-effect transistors (FETs). Upon reversal of the gate voltage sweep direction, pentacene FETs exhibited hysteretic behaviours in the subthreshold region, which was more pronounced for the FET having smaller pentacene grains. No shift in the flat-band voltage of the metal-insulator-semiconductor capacitor elucidates that the observed hysteresis was mainly caused by the influence of localized trap states existing at pentacene grain boundaries. From the results of continuous on/off switching operation of the pentacene FETs, hole depletion during the off period is found to be limited by pentacene grain boundaries. It is suggested that the polycrystalline nature of a pentacene film plays an important role on the dynamic characteristics of pentacene FETs

    Alignment of liquid crystal/carbon nanotube dispersions for application in unconventional computing

    Get PDF
    We demonstrate the manipulation of single-walled carbon nanotube/liquid crystal composites using in-plane electric fields. The conductivity of the materials is shown to be dependant on the application of a DC bias across the electrodes. When the materials are subjected to this in-plane field, it is suggested that the liquid crystals orientate, thereby forcing the SWCNTs to follow in alignment. This process occurs over many seconds, since the SWCNTs are significantly larger in size than the liquid crystals. The opportunity for applying this material to unconventional computing problems is suggested

    Enhanced THz transmission apertures through sub-wavelength annular apertures

    Get PDF
    We report on the development of a surface micromachined process for the fabrication of coaxial apertures surrounded by periodic grooves. The process uses a combination of copper electroforming and the negative epoxy based resist, SU8, as a thin flexible substrate. The device dimensions are suitable for the implementation of filters at THz frequencies, and measurements show a pass band centred around 1.5 THz. These devices could form the basis of the next generation of THz biosensors

    Zinc oxide thin-film transistors fabricated at low temperature by chemical spray pyrolysis

    Get PDF
    We report the electrical behavior of undoped zinc oxide thin-film transistors (TFTs) fabricated by low-temperature chemical spray pyrolysis. An aerosol system utilizing aerodynamic focusing was used to deposit the ZnO. Polycrystalline films were subsequently formed by annealing at the relatively low temperature of 140°C. The saturation mobility of the TFTs was 2 cm2/Vs, which is the highest reported for undoped ZnO TFTs manufactured below 150°C. The devices also had an on/off ratio of 104 and a threshold voltage of −3.5 V. These values were found to depend reversibly on measurement conditions

    Effects of hydrogen plasma treatment on the electrical behavior of solution-processed ZnO transistors

    Get PDF
    The effects of hydrogen plasma treatment on the active layer of top-contact zinc oxide thin film transistors are reported. The transfer characteristics of the reference devices exhibited large hysteresis effects and an increasing positive threshold voltage (VTH) shift on repeated measurements. In contrast, following the plasma processing, the corresponding characteristics of the transistors exhibited negligible hysteresis and a very small VTH shift; the devices also possessed higher field effect carrier mobility values. These results were attributed to the presence of functional groups in the vicinity of the semiconductor/gate insulator interface, which prevents the formation of an effective channel

    Evolution of Electronic Circuits using Carbon Nanotube Composites

    Get PDF
    Evolution-in-materio concerns the computer controlled manipulation of material systems using external stimuli to train or evolve the material to perform a useful function. In this paper we demonstrate the evolution of a disordered composite material, using voltages as the external stimuli, into a form where a simple computational problem can be solved. The material consists of single-walled carbon nanotubes suspended in liquid crystal; the nanotubes act as a conductive network, with the liquid crystal providing a host medium to allow the conductive network to reorganise when voltages are applied. We show that the application of electric fields under computer control results in a significant change in the material morphology, favouring the solution to a classification task
    • …
    corecore