73 research outputs found

    Sampling of fluid through skin with magnetohydrodynamics for noninvasive glucose monitoring

    Get PDF
    Out of 463 million people currently with diabetes, 232 million remain undiagnosed. Diabetes is a threat to human health, which could be mitigated via continuous self-monitoring of glucose. In addition to blood, interstitial fluid is considered to be a representative sample for glucose monitoring, which makes it highly attractive for wearable on-body sensing. However, new technologies are needed for efficient and noninvasive sampling of interstitial fluid through the skin. In this report, we introduce the use of Lorentz force and magnetohydrodynamics to noninvasively extract dermal interstitial fluid. Using porcine skin as an ex-vivo model, we demonstrate that the extraction rate of magnetohydrodynamics is superior to that of reverse iontophoresis. This work seeks to provide a safe, effective, and noninvasive sampling method to unlock the potential of wearable sensors in needle-free continuous glucose monitoring devices that can benefit people living with diabetes.Peer reviewe

    Pilot study in human healthy volunteers on the use of magnetohydrodynamics in needle-free continuous glucose monitoring

    Get PDF
    The benefits of continuous glucose monitoring (CGM) in diabetes management are extensively documented. Yet, the broader adoption of CGM systems is limited by their cost and invasiveness. Current CGM devices, requiring implantation or the use of hypodermic needles, fail to offer a convenient solution. We have demonstrated that magnetohydrodynamics (MHD) is effective at extracting dermal interstitial fluid (ISF) containing glucose, without the use of needles. Here we present the first study of ISF sampling with MHD for glucose monitoring in humans. We conducted 10 glucose tolerance tests on 5 healthy volunteers and obtained a significant correlation between the concentration of glucose in ISF samples extracted with MHD and capillary blood glucose samples. Upon calibration and time lag removal, the data indicate a Mean Absolute Relative Difference (MARD) of 12.9% and Precision Absolute Relative Difference of 13.1%. In view of these results, we discuss the potential value and limitations of MHD in needle-free glucose monitoring.Peer reviewe

    Interlaboratory Evaluation of Different Extraction and Real-Time PCR Methods for Detection of Coxiella burnetii DNA in Serum

    Get PDF
    In the Netherlands, there is an ongoing and unparalleled outbreak of Q fever. Rapid and reliable methods to identify patients infected with Coxiella burnetii, the causative agent of Q fever, are urgently needed. We evaluated the performance of different DNA extraction methods and real-time PCR assays that are in use in seven diagnostic or reference laboratories in the Netherlands. A low degree of variation in the sensitivities of most of the developed real-time PCR assays was observed. However, PCR assays amplifying short DNA fragments yielded better results than those producing large DNA fragments. With regard to DNA extraction, the automated MagNA Pure Compact system and the manual QIAamp DNA mini kit consistently yielded better results than either the MagNA Pure LC system and NucliSens EasyMag (both automated) or the High Pure viral nucleic acid kit (manual). The present study shows that multiple combinations of DNA extraction kits and real-time PCR assays offer equivalent solutions to detect C. burnetii DNA in serum samples from patients suspected to have Q fever

    Effect of Parental Type 2 Diabetes on Offspring With Type 1 Diabetes

    Get PDF
    OBJECTIVE—The purpose of this study was to study the association between a parental history of type 2 diabetes and the metabolic profile as well as the presence of the metabolic syndrome and diabetes complications in patients with type 1 diabetes

    Association of Angiotensin II Type 2 Receptor Gene A1818T Polymorphism with Progression of Immunoglobulin A Nephropathy in Korean Patients

    Get PDF
    We determined the relationship between the progression of immunoglobulin A nephropathy (IgAN) and the A1818T polymorphism in intron 2 of Angiotensin II type 2 receptor (AT2R) gene, which might play protective roles in the pathogenesis of IgAN. Patients with biopsy-proven IgAN were recruited from the registry of the Progressive REnal disease and Medical Informatics and gEnomics Research (PREMIER) which was sponsored by the Korean Society of Nephrology. A1818T polymorphism of AT2R gene was analyzed with PCR-RFLP method and the association with the progression of IgAN, which was defined as over 50% increase in baseline serum creatinine level, was analyzed with survival analysis. Among the 480 patients followed for more than 10 months, the group without T allele had significantly higher rates of progression of IgAN than the group with T allele (11.4% vs. 3.9%, p=0.024), although there were no significant differences in the baseline variables such as initial serum creatinine level, the degree of proteinuria, and blood pressure. In the Cox's proportional hazard model, the hazard ratio of disease progression in the patients with T allele was 0.221 (95% confidence interval for Exp(B): 0.052-0.940, p=0.041) compared to that of without T allele. In conclusion, A1818T polymorphism of AT2R gene was associated with the progression of IgAN

    Effects of MCF2L2, ADIPOQ and SOX2 genetic polymorphisms on the development of nephropathy in type 1 Diabetes Mellitus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>MCF2L2, ADIPOQ </it>and <it>SOX2 </it>genes are located in chromosome 3q26-27, which is linked to diabetic nephropathy (DN). <it>ADIPOQ </it>and <it>SOX2 </it>genetic polymorphisms are found to be associated with DN. In the present study, we first investigated the association between <it>MCF2L2 </it>and DN, and then evaluated effects of these three genes on the development of DN.</p> <p>Methods</p> <p>A total of 1177 type 1 diabetes patients with and without DN from the GoKinD study were genotyped with TaqMan allelic discrimination. All subjects were of European descent.</p> <p>Results</p> <p>Leu359Ile T/G variant in the <it>MCF2L2 </it>gene was found to be associated with DN in female subjects (P = 0.017, OR = 0.701, 95%CI 0.524-0.938) but not in males. The GG genotype carriers among female patients with DN had tendency decreased creatinine and cystatin levels compared to the carriers with either TT or TG genotypes. This polymorphism <it>MCF2L2-</it>rs7639705 together with SNPs of <it>ADIPOQ</it>-rs266729 and <it>SOX2</it>-rs11915160 had combined effects on decreased risk of DN in females (P = 0.001).</p> <p>Conclusion</p> <p>The present study provides evidence that <it>MCF2L2</it>, <it>ADIPOQ </it>and <it>SOX2 </it>genetic polymorphisms have effects on the resistance of DN in female T1D patients, and suggests that the linkage with DN in chromosome 3q may be explained by the cumulated genetic effects.</p

    Association between LTA, TNF and AGER Polymorphisms and Late Diabetic Complications

    Get PDF
    BACKGROUND: Several candidate genes on the short arm of chromosome 6 including the HLA locus, TNF, LTA and AGER could be associated with late diabetic complications. The aim of our study was therefore to explore whether polymorphisms (TNF -308 G-->A, LTA T60N C-->A and AGER -374 T-->A) in these genes alone or together (as haplotypes) increased the risk for diabetic complications. METHODOLOGY/PRINCIPAL FINDINGS: The studied polymorphisms were genotyped in 742 type 1 and 2957 type 2 diabetic patients as well as in 206 non-diabetic control subjects. The Haploview program was used to analyze putative linkage disequilibrium between studied polymorphisms. The TNF, LTA and AGER polymorphisms were associated with the HLA-DQB1 risk genotypes. The AGER -374 A allele was more common in type 1 diabetic patients with than without diabetic nephropathy (31.2 vs. 28.4%, p = 0.007). In a logistic regression analysis, the LTA but not the AGER polymorphism was associated with diabetic nephropathy (OR 2.55[1.11-5.86], p = 0.03). The AGER -374 A allele was associated with increased risk of sight threatening retinopathy in type 2 diabetic patients (1.65[1.11-2.45], p = 0.01) and also with increased risk for macrovascular disease in type 1 diabetic patients (OR 2.05[1.19-3.54], p = 0.01), but with decreased risk for macrovascular disease in type 2 diabetic patients (OR 0.66[0.49-0.90], p = 0.009). The TNF A allele was associated with increased risk for macrovascular complications in type 2 (OR 1.53 [1.04-2.25], p = 0.03, but not in type 1 diabetic patients. CONCLUSIONS/SIGNIFICANCE: The association between diabetic complications and LTA, TNF and AGER polymorphisms is complex, with partly different alleles conferring susceptibility in type 1 and type 2 diabetic patients. We can not exclude the possibility that the genes are part of a large haplotype block that also includes HLA-DQB1 risk genotypes

    A role for NPY-NPY2R signaling in albuminuric kidney disease

    Get PDF
    Albuminuria is an independent risk factor for the progression to end-stage kidney failure, cardiovascular morbidity, and premature death. As such, discovering signaling pathways that modulate albuminuria is desirable. Here, we studied the transcriptomes of podocytes, key cells in the prevention of albuminuria, under diabetic conditions. We found that Neuropeptide Y (NPY) was significantly down-regulated in insulin-resistant vs. insulin-sensitive mouse podocytes and in human glomeruli of patients with early and late-stage diabetic nephropathy, as well as other nondiabetic glomerular diseases. This contrasts with the increased plasma and urinary levels of NPY that are observed in such conditions. Studying NPY-knockout mice, we found that NPY deficiency in vivo surprisingly reduced the level of albuminuria and podocyte injury in models of both diabetic and nondiabetic kidney disease. In vitro, podocyte NPY signaling occurred via the NPY2 receptor (NPY2R), stimulating PI3K, MAPK, and NFAT activation. Additional unbiased proteomic analysis revealed that glomerular NPY-NPY2R signaling predicted nephrotoxicity, modulated RNA processing, and inhibited cell migration. Furthermore, pharmacologically inhibiting the NPY2R in vivo significantly reduced albuminuria in adriamycin-treated glomerulosclerotic mice. Our findings suggest a pathogenic role of excessive NPY-NPY2R signaling in the glomerulus and that inhibiting NPY-NPY2R signaling in albuminuric kidney disease has therapeutic potential. Chronic kidney disease (CKD) is a major global healthcare concern, affecting over 10% of the general population, and frequently occurs secondary to other systemic disorders including diabetes, obesity, hypertension, and the metabolic syndrome. A common early hallmark of CKD is albuminuria, which not only reflects damage to the glomerular filtration barrier (GFB) in the kidney but also is an important independent risk factor for the progression to end-stage renal failure and cardiovascular disease (1⇓–3). Thus, strategies to prevent albuminuria have important therapeutic potential, particularly in the early stages of CKD progression. Podocytes are highly specialized epithelial cells of the glomerulus, lining the urinary side of the filtration barrier. Owing to their complex, dynamic structures and their ability to secrete (and adapt to) a number of growth factors, these cells have a central role in filtration barrier maintenance (4). As such, podocyte damage is a key driver of albuminuria and glomerular disease in numerous settings and occurs early in the pathogenesis of many albuminuric conditions (5⇓⇓⇓–9). While it is well-established that podocyte damage is a major cause of albuminuria (8), the pathways and molecules involved in podocyte injury are incompletely understood. We (10, 11) and others (12, 13) have highlighted the importance of podocyte insulin responses in maintaining glomerular function, and it is now evident that circulating factors associated with common systemic disorders, including diabetes, obesity, and the metabolic syndrome, can directly induce podocyte insulin resistance (14⇓⇓–17) and associated damage (15, 18). In this study, we analyzed the transcriptomes of insulin-sensitive and insulin-resistant podocytes with the aim of identifying molecules that are differentially regulated in podocyte damage, which may play a role in albuminuric kidney disease. This unbiased transcriptome analysis revealed that Neuropeptide Y (Npy) was the most highly down-regulated transcript in insulin-resistant vs. insulin-sensitive podocytes. Analysis of patient cohorts also revealed a significant reduction in glomerular NPY expression in both early and late-stage diabetic nephropathy (DN), as well as in several other human albuminuric conditions. This contrasts with the increased plasma and urinary levels of NPY that are observed in diabetes and CKD (19⇓⇓–22). This prompted us to further investigate the potential role of NPY (and NPY signaling) in the podocyte and glomerulus
    • 

    corecore