224 research outputs found

    Testing Electrostatic Complementarity in Enzyme Catalysis: Hydrogen Bonding in the Ketosteroid Isomerase Oxyanion Hole

    Get PDF
    A longstanding proposal in enzymology is that enzymes are electrostatically and geometrically complementary to the transition states of the reactions they catalyze and that this complementarity contributes to catalysis. Experimental evaluation of this contribution, however, has been difficult. We have systematically dissected the potential contribution to catalysis from electrostatic complementarity in ketosteroid isomerase. Phenolates, analogs of the transition state and reaction intermediate, bind and accept two hydrogen bonds in an active site oxyanion hole. The binding of substituted phenolates of constant molecular shape but increasing p K (a) models the charge accumulation in the oxyanion hole during the enzymatic reaction. As charge localization increases, the NMR chemical shifts of protons involved in oxyanion hole hydrogen bonds increase by 0.50–0.76 ppm/p K (a) unit, suggesting a bond shortening of ˜0.02 Γ…/p K (a) unit. Nevertheless, there is little change in binding affinity across a series of substituted phenolates (ΔΔG = βˆ’0.2 kcal/mol/p K (a) unit). The small effect of increased charge localization on affinity occurs despite the shortening of the hydrogen bonds and a large favorable change in binding enthalpy (ΔΔH = βˆ’2.0 kcal/mol/p K (a) unit). This shallow dependence of binding affinity suggests that electrostatic complementarity in the oxyanion hole makes at most a modest contribution to catalysis of ˜300-fold. We propose that geometrical complementarity between the oxyanion hole hydrogen-bond donors and the transition state oxyanion provides a significant catalytic contribution, and suggest that KSI, like other enzymes, achieves its catalytic prowess through a combination of modest contributions from several mechanisms rather than from a single dominant contribution

    Brain-Wide Analysis of the Supraspinal Connectome Reveals Anatomical Correlates to Functional Recovery After Spinal Injury

    Get PDF
    The supraspinal connectome is essential for normal behavior and homeostasis and consists of numerous sensory, motor, and autonomic projections from brain to spinal cord. Study of supraspinal control and its restoration after damage has focused mostly on a handful of major populations that carry motor commands, with only limited consideration of dozens more that provide autonomic or crucial motor modulation. Here, we assemble an experimental workflow to rapidly profile the entire supraspinal mesoconnectome in adult mice and disseminate the output in a web-based resource. Optimized viral labeling, 3D imaging, and registration to a mouse digital neuroanatomical atlas assigned tens of thousands of supraspinal neurons to 69 identified regions. We demonstrate the ability of this approach to clarify essential points of topographic mapping between spinal levels, measure population-specific sensitivity to spinal injury, and test the relationships between region-specific neuronal sparing and variability in functional recovery. This work will spur progress by broadening understanding of essential but understudied supraspinal populations

    Reducing C-terminal truncation mitigates synucleinopathy and neurodegeneration in a transgenic model of multiple system atrophy

    Get PDF
    Multiple system atrophy (MSA) is a sporadic orphan neurodegenerative disorder. No treatment is currently available to slow down the aggressive neurodegenerative process, and patients die within a few years after disease onset. The cytopathological hallmark of MSA is the accumulation of alpha-synuclein (Ξ±-syn) aggregates in affected oligodendrocytes. Several studies point to Ξ±-syn oligomerization and aggregation as a mediator of neurotoxicity in synucleinopathies including MSA. C-terminal truncation by the inflammatory protease caspase-1 has recently been implicated in the mechanisms that promote aggregation of Ξ±-syn in vitro and in neuronal cell models of Ξ±-syn toxicity. We present here an in vivo proof of concept of the ability of the caspase-1 inhibitor prodrug VX-765 to mitigate Ξ±-syn pathology and to mediate neuroprotection in proteolipid protein Ξ±-syn (PLP-SYN) mice, a transgenic mouse model of MSA. PLP-SYN and age-matched wild-type mice were treated for a period of 11 wk with VX-765 or placebo. VX-765 prevented motor deficits in PLP-SYN mice compared with placebo controls. More importantly, VX-765 was able to limit the progressive toxicity of Ξ±-syn aggregation by reducing its load in the striatum of PLP-SYN mice. Not only did VX-765 reduce truncated Ξ±-syn, but it also decreased its monomeric and oligomeric forms. Finally, VX-765 showed neuroprotective effects by preserving tyrosine hydroxylase-positive neurons in the substantia nigra of PLP-SYN mice. In conclusion, our results suggest that VX-765, a drug that was well tolerated in a 6 wk-long phase II trial in patients with epilepsy, is a promising candidate to achieve disease modification in synucleinopathies by limiting Ξ±-syn accumulation

    The compositional and evolutionary logic of metabolism

    Full text link
    Metabolism displays striking and robust regularities in the forms of modularity and hierarchy, whose composition may be compactly described. This renders metabolic architecture comprehensible as a system, and suggests the order in which layers of that system emerged. Metabolism also serves as the foundation in other hierarchies, at least up to cellular integration including bioenergetics and molecular replication, and trophic ecology. The recapitulation of patterns first seen in metabolism, in these higher levels, suggests metabolism as a source of causation or constraint on many forms of organization in the biosphere. We identify as modules widely reused subsets of chemicals, reactions, or functions, each with a conserved internal structure. At the small molecule substrate level, module boundaries are generally associated with the most complex reaction mechanisms and the most conserved enzymes. Cofactors form a structurally and functionally distinctive control layer over the small-molecule substrate. Complex cofactors are often used at module boundaries of the substrate level, while simpler ones participate in widely used reactions. Cofactor functions thus act as "keys" that incorporate classes of organic reactions within biochemistry. The same modules that organize the compositional diversity of metabolism are argued to have governed long-term evolution. Early evolution of core metabolism, especially carbon-fixation, appears to have required few innovations among a small number of conserved modules, to produce adaptations to simple biogeochemical changes of environment. We demonstrate these features of metabolism at several levels of hierarchy, beginning with the small-molecule substrate and network architecture, continuing with cofactors and key conserved reactions, and culminating in the aggregation of multiple diverse physical and biochemical processes in cells.Comment: 56 pages, 28 figure

    25-Hydroxycholesterol amplifies microglial IL-1Ξ² production in an apoE isoform-dependent manner

    Get PDF
    BACKGROUND: Genome-wide association studies of Alzheimer\u27s disease (AD) have implicated pathways related to lipid homeostasis and innate immunity in AD pathophysiology. However, the exact cellular and chemical mediators of neuroinflammation in AD remain poorly understood. The oxysterol 25-hydroxycholesterol (25-HC) is an important immunomodulator produced by peripheral macrophages with wide-ranging effects on cell signaling and innate immunity. Cholesterol 25-hydroxylase (CH25H), the enzyme responsible for 25-HC production, has also been found to be one of the disease-associated microglial (DAM) genes that are upregulated in the brain of AD and AD transgenic mouse models. METHODS: We used real-time PCR and immunoblotting to examine CH25H expression in human AD brain tissue and in transgenic mouse brain tissue-bearing amyloid-Ξ² plaques or tau pathology. The innate immune response of primary mouse microglia under different treatment conditions or bearing different genetic backgrounds was analyzed using ELISA, western blotting, or immunocytochemistry. RESULTS: We found that CH25H expression is upregulated in human AD brain tissue and in transgenic mouse brain tissue-bearing amyloid-Ξ² plaques or tau pathology. Treatment with the toll-like receptor 4 (TLR4) agonist lipopolysaccharide (LPS) markedly upregulates CH25H expression in the mouse brain and stimulates CH25H expression and 25-HC secretion in mouse primary microglia. We found that LPS-induced microglial production of the pro-inflammatory cytokine IL-1Ξ² is markedly potentiated by 25-HC and attenuated by the deletion of CH25H. Microglia expressing apolipoprotein E4 (apoE4), a genetic risk factor for AD, produce greater amounts of 25-HC than apoE3-expressing microglia following treatment with LPS. Remarkably, 25-HC treatment results in a greater level of IL-1Ξ² secretion in LPS-activated apoE4-expressing microglia than in apoE2- or apoE3-expressing microglia. Blocking potassium efflux or inhibiting caspase-1 prevents 25-HC-potentiated IL-1Ξ² release in apoE4-expressing microglia, indicating the involvement of caspase-1 inflammasome activity. CONCLUSION: 25-HC may function as a microglial-secreted inflammatory mediator in the brain, promoting IL-1Ξ²-mediated neuroinflammation in an apoE isoform-dependent manner (E4\u3e\u3eE2/E3) and thus may be an important mediator of neuroinflammation in AD

    Drug Export Pathway of Multidrug Exporter AcrB Revealed by DARPin Inhibitors

    Get PDF
    The multidrug exporter AcrB is the inner membrane component of the AcrAB-TolC drug efflux system in Escherichia coli and is responsible for the resistance of this organism to a wide range of drugs. Here we describe the crystal structure of the trimeric AcrB in complex with a designed ankyrin-repeat protein (DARPin) inhibitor at 2.5-Γ… resolution. The three subunits of AcrB are locked in different conformations revealing distinct channels in each subunit. There seems to be remote conformational coupling between the channel access, exit, and the putative proton-translocation site, explaining how the proton motive force is used for drug export. Thus our structure suggests a transport pathway not through the central pore but through the identified channels in the individual subunits, which greatly advances our understanding of the multidrug export mechanism

    In Vitro Recombination Catalyzed by Bacterial Class 1 Integron Integrase IntI1 Involves Cooperative Binding and Specific Oligomeric Intermediates

    Get PDF
    Gene transfer via bacterial integrons is a major pathway for facilitating the spread of antibiotic resistance genes across bacteria. Recently the mechanism underlying the recombination catalyzed by class 1 integron recombinase (IntI1) between attC and attI1 was highlighted demonstrating the involvement of a single-stranded intermediary on the attC site. However, the process allowing the generation of this single-stranded substrate has not been determined, nor have the active IntI1β€’DNA complexes been identified. Using the in vitro strand transfer assay and a crosslink strategy we previously described we demonstrated that the single-stranded attC sequences could be generated in the absence of other bacterial proteins in addition to IntI. This suggests a possible role for this protein in stabilizing and/or generating this structure. The mechanism of folding of the active IntIβ€’DNA complexes was further analyzed and we show here that it involves a cooperative binding of the protein to each recombination site and the emergence of different oligomeric species specific for each DNA substrate. These findings provide further insight into the recombination reaction catalyzed by IntI1

    A Rigidifying Salt-Bridge Favors the Activity of Thermophilic Enzyme at High Temperatures at the Expense of Low-Temperature Activity

    Get PDF
    Although enzymes from thermophiles thriving in hot habitats are more stable than their mesophilic homologs, they are often less active at low temperatures. One theory suggests that extra stabilizing interactions found in thermophilic enzymes may increase their rigidity and decrease enzymatic activity at lower temperatures. We used acylphosphatase as a model to study how flexibility affects enzymatic activity. This enzyme has a unique structural feature in that an invariant arginine residue, which takes part in catalysis, is restrained by a salt-bridge in the thermophilic homologs but not in its mesophilic homologs. Here, we demonstrate the trade-offs between flexibility and enzymatic activity by disrupting the salt-bridge in a thermophilic acylphosphatase and introducing it in the mesophilic human homolog. Our results suggest that the salt-bridge is a structural adaptation for thermophilic acylphosphatases as it entropically favors enzymatic activity at high temperatures by restricting the flexibility of the active-site residue. However, at low temperatures the salt-bridge reduces the enzymatic activity because of a steeper temperature-dependency of activity
    • …
    corecore