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25-Hydroxycholesterol amplifies microglial
IL-1β production in an apoE isoform-
dependent manner
Man Ying Wong1, Michael Lewis2, James J. Doherty2, Yang Shi3, Anil G. Cashikar6, Anna Amelianchik1,
Svitlana Tymchuk1, Patrick M. Sullivan4, Mingxing Qian5, Douglas F. Covey5, Gregory A. Petsko1,
David M. Holtzman3, Steven M. Paul2,6* and Wenjie Luo1*

Abstract

Background: Genome-wide association studies of Alzheimer’s disease (AD) have implicated pathways related to
lipid homeostasis and innate immunity in AD pathophysiology. However, the exact cellular and chemical mediators
of neuroinflammation in AD remain poorly understood. The oxysterol 25-hydroxycholesterol (25-HC) is an important
immunomodulator produced by peripheral macrophages with wide-ranging effects on cell signaling and innate
immunity. Cholesterol 25-hydroxylase (CH25H), the enzyme responsible for 25-HC production, has also been found
to be one of the disease-associated microglial (DAM) genes that are upregulated in the brain of AD and AD
transgenic mouse models.

Methods: We used real-time PCR and immunoblotting to examine CH25H expression in human AD brain tissue
and in transgenic mouse brain tissue-bearing amyloid-β plaques or tau pathology. The innate immune response of
primary mouse microglia under different treatment conditions or bearing different genetic backgrounds was
analyzed using ELISA, western blotting, or immunocytochemistry.

Results: We found that CH25H expression is upregulated in human AD brain tissue and in transgenic mouse
brain tissue-bearing amyloid-β plaques or tau pathology. Treatment with the toll-like receptor 4 (TLR4) agonist
lipopolysaccharide (LPS) markedly upregulates CH25H expression in the mouse brain and stimulates CH25H
expression and 25-HC secretion in mouse primary microglia. We found that LPS-induced microglial production of
the pro-inflammatory cytokine IL-1β is markedly potentiated by 25-HC and attenuated by the deletion of CH25H.
Microglia expressing apolipoprotein E4 (apoE4), a genetic risk factor for AD, produce greater amounts of 25-HC
than apoE3-expressing microglia following treatment with LPS. Remarkably, 25-HC treatment results in a greater
level of IL-1β secretion in LPS-activated apoE4-expressing microglia than in apoE2- or apoE3-expressing microglia.
Blocking potassium efflux or inhibiting caspase-1 prevents 25-HC-potentiated IL-1β release in apoE4-expressing
microglia, indicating the involvement of caspase-1 inflammasome activity.

(Continued on next page)

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: smpaulmd@gmail.com; wel2009@med.cornell.edu
2Sage Therapeutics, Cambridge, Massachusetts, USA
1Appel Alzheimer’s Disease Research Institute, Feil Family Brain and Mind
Research Institute, Weill Cornell Medicine, New York, NY, USA
Full list of author information is available at the end of the article

Wong et al. Journal of Neuroinflammation          (2020) 17:192 
https://doi.org/10.1186/s12974-020-01869-3

http://crossmark.crossref.org/dialog/?doi=10.1186/s12974-020-01869-3&domain=pdf
http://orcid.org/0000-0003-3752-8266
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:smpaulmd@gmail.com
mailto:wel2009@med.cornell.edu


(Continued from previous page)

Conclusion: 25-HC may function as a microglial-secreted inflammatory mediator in the brain, promoting IL-1β-
mediated neuroinflammation in an apoE isoform-dependent manner (E4>>E2/E3) and thus may be an important
mediator of neuroinflammation in AD.

Keywords: Alzheimer’s disease, Microglia, Inflammation, Lipid metabolism, Apolipoprotein E, Interleukin-1β, Cholesterol 25-
hydroxylase, Oxysterol, 25-Hydroxycholesterol, Lipopolysaccharide, Inflammasome

Introduction
Neuroinflammation is a prominent feature of the
neuropathology of Alzheimer’s disease (AD), in
addition to β-amyloid (Aβ) plaques, tau-containing
neurofibrillary tangles (NFT), and synaptic dysfunc-
tion followed by neurodegeneration [1]. Emerging
evidence indicates that neuroinflammation, mediated
by activated glial cells, plays a fundamental role in
the pathogenesis and neurodegeneration of AD [1].
Brain inflammation either triggered by or proceeding
other AD pathology sustains and likely contributes
to the progressive neurodegeneration that character-
izes AD [2]. Defining the molecular and cellular
mechanisms underlying neuroinflammation as well as
the chemical mediators of the inflammatory cascade
are critical for understanding how neuroinflamma-
tion contributes to AD pathogenesis.
In AD, neuroinflammation increases with disease pro-

gression and is primarily driven by glial cells, especially
microglia. This pathophysiological inflammatory cascade
is associated with increased production of pro-
inflammatory cytokines and other key inflammatory medi-
ators [3, 4], including interleukin-1β (IL-1β), a very potent
pro-inflammatory cytokine [5–8]. Higher concentrations
of IL-1β have been reported in cerebrospinal fluid and
brain tissue of AD patients [9–11] and in microglia sur-
rounding Aβ plaques [12]. Sustained elevations of IL-1β
have been postulated to play a key role in AD pathogen-
esis [6, 12–14]. Active IL-1β (17kD) is produced from an
inactive 31 kDa pro-IL-1β via cleavage by the active form
of cysteine protease caspase-1, which is in turn produced
by the inflammasome, a multicomponent protein complex
consisting of pattern-recognition receptors (including
NLRP3, nucleotide-binding domain and leucine-rich
repeat-containing protein 3), ASC (apoptosis-associated
speck-like protein containing a CARD) and caspase-1
[15]. The elevations of IL-1β reported in the AD brain
strongly suggest activation of the inflammasome [16].
Supporting this, aggregated Aβ has been shown to activate
the inflammasome via a CD36/TLR4/6-dependent mech-
anism [17]. NLRP3 deficiency reduces amyloid deposition
and rescues memory deficits in the APP/PS1 model of AD
[18]. Understanding the cellular mechanisms responsible
for IL-1β production by microglia may facilitate the devel-
opment of a disease-modifying AD therapeutic that

reduces IL-1β-mediated immune signaling and associated
neuroinflammation.
The apolipoprotein E4 (APOE4) allele is the most com-

mon and important genetic risk factor for late-onset spor-
adic AD [19–21]. In the periphery, apoE regulates lipid
metabolism [22, 23]. ApoE is the major apolipoprotein in
the brain and together with apolipoprotein J (apoJ) plays a
major role in cholesterol metabolism and transport involv-
ing lipid efflux and lipid delivery [23–26]. ApoE in the
brain is mainly produced by astrocytes and also by neu-
rons after brain injury [27]. Interestingly, Cantuti-
Castelvetri and colleagues recently described a defect in
cholesterol clearance in apoE-deficient phagocytes (in-
cluding microglia) isolated from the brain after myelin
damage [28]. Nugent et al. also reported that apoE knock-
out glia demonstrates a defect in cholesterol transport and
accumulate cellular cholesterol esters [29]. Both studies
suggest an important role for apoE in brain cholesterol
metabolism and homeostasis. In AD, numerous studies
have also shown that apoE functions as an important
regulator of brain amyloid (amyloid β-peptide or Aβ) de-
position and clearance (apoE2>E3>E4), which most likely
accounts for one of the known mechanisms as to how
APOE4 increase AD risk [30]. Recently, several studies
have shown that APOE4 is associated with increased in-
nate immune reactivity and enhanced cytokine secretion
in primary microglia and peripheral macrophages in vari-
ous animal models as well as human subjects [31–42].
Our previous work showed a higher innate immune re-
activity of apoE4-expressing microglia following LPS treat-
ment and found that APOE4/4 genotype greatly
influences tau-dependent neuroinflammation in a tau
transgenic mouse model of neurodegeneration [43]. To-
gether, these data suggest that apoE4 may exert a “toxic”
gain of function to promote microglia-mediated neuroin-
flammation and neurodegeneration in AD.
25-hydroxycholesterol (25-HC) is a potent oxysterol

regulator of cholesterol biosynthesis [44–46]. It is con-
verted from cholesterol by the oxidoreductase choles-
terol 25-hydroxylase (CH25H) [47, 48], an enzyme
highly expressed and induced primarily in peripheral
macrophages and dendritic cells in response to inflam-
matory stimuli like LPS and interferon [49, 50]. Al-
though CH25H deficiency does not cause defects in
cholesterol homeostasis [50, 51], 25-HC appears to serve
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multiple functions to regulate both innate and adaptive
immunity. It acts as either an anti- or pro-inflammatory
regulator involved in protection from a viral infection,
macrophage foam cell formation, immunoglobin IgA
production, and cytokine production [50]. CH25H is an
interferon (IFN)-inducible gene in response to viral in-
fection [52]. To date, the function of CH25H and 25-HC
in the central nervous system has not been well charac-
terized. An association of CH25H with AD was first
reported in a hippocampal microarray study of AD brain
tissue [53] and further suggested by an AlzGene meta-
analysis for a sporadic AD population [54] and other AD
patient-based independent systematic analyses [55–57].
The upregulation of CH25H mRNA in affected brain
regions in AD patients versus controls was first re-
ported in a hippocampal microarray [53]. The upregu-
lation of CH25H expression has also been detected in
the brain tissue of AD transgenic mice [58–60]. Re-
cently, Ofengeim et al. found that the upregulation of
CH25H expression in microglia in APP/PS1 mice de-
pends on RIPK1, a death-domain containing Ser/Thr
kinase mediating downstream signaling of type I
TNFα receptors [61]. Moreover, two recent studies
have reported a phenotypic change of microglia in
neurodegenerative diseases from homeostatic to
disease-associated microglia (DAM) [62, 63]. In these
studies, CH25H has been identified as one of the up-
regulated genes featured in the DAM subcluster,
which is characterized by expression of typical micro-
glial markers, Iba1, Cst3, and Hexb, and upregulation
of genes involved in phagocytosis and lipid metabol-
ism, including Apoe, Ctsd, Lpl, Tyrobp, and Trem2
(reviewed by Deczkowska, et al. 2018) [64].
In the present study, we investigated whether 25-HC

regulates the innate immune response of microglia or
whether the APOE4 allele relative to the other common
APOE alleles impacts the effects of 25-HC on microglial
activation. Our results demonstrate that CH25H is up-
regulated in the AD brain and AD transgenic mouse
brain. We further show that 25-HC is produced by acti-
vated primary microglia and augments IL-1β production
stimulated by the TLR4 agonist LPS. Importantly micro-
glia expressing apoE4 produce much greater amounts of
25-HC and IL-1β in response to LPS treatment com-
pared to apoE2- or apoE3-expressing microglia. Remark-
ably, 25-HC also markedly potentiates LPS-mediated IL-
1β secretion by apoE4-expressing microglia. The inhib-
ition of inflammasome activity markedly reduces the
augmentation of microglial IL-1β secretion by 25-HC.
Our results suggest that 25-HC may function as an in-
flammatory mediator of the IL-1β-dependent inflamma-
tory cascade in microglia and thus, may contribute to
apoE4-dependent neuroinflammation and neurodegener-
ation in AD.

Materials and methods
Animals
All experiments were conducted in accordance with
relevant NIH guidelines and regulations related to the
Care and Use of Laboratory Animals and human tissue.
Animal procedures were performed according to proto-
cols approved by the Research Animal Resource Center
at Weill Cornell Medicine. The APPPS1-21 transgenic
mouse model [65] co-expressing human APP KM670/
671NL and Presenilin-1 L166P under the control of a
neuron-specific Thy1 promoter element was kindly pro-
vided by Dr. Mathias Jucker through an agreement with
Koesler. These mice were intercrossed and maintained
on a C57BL/6 J background. PS19 expressing human
P301S tau under the control of PrP promotor were pur-
chased from the Jackson laboratory (#008169) and back-
crossed and maintained on a C57BL/6 background.
CH25H knockout mice [66] were purchased from the
Jackson laboratory (JAX stock #016263) and maintained
as homozygotes. Human APOE targeted replacement
mice with the human APOE2, APOE3, or APOE4 cod-
ing sequences inserted behind the endogenous murine
APOE promoter on a C57BL/6 J background were pro-
vided by P.M. Sullivan of Duke University [67–69].
APOE-/- mice were purchased from Taconic. P301S tau
transgenic mice that are homozygous for human APOE2
(TE2), APOE3 (TE3), APOE4 (TE4), or with no expres-
sion of apoE (TEKO) (C57BL/6) were generated by the
Holtzman laboratory at Washington University, St. Louis
as described previously [43]. TLR4 knockout mice were
purchased from the Jackson laboratory (JAX stock
#029051) and maintained as homozygotes. All animals
were maintained in a pathogen-free environment, and
experiments on mice were conducted according to the
protocol approved by the Weill Cornell Medicine Ani-
mal Care Committee.

Human brain specimens
Frontal cortical tissue samples from AD patients or age-
matched controls with no reported clinical signs of de-
mentia (≥80 years) were obtained from the Brain Bank of
the University of Miami Miller School of Medicine, the
Human Brain and Spinal Fluid Resource Center of the
Greater Los Angeles VA Healthcare System at the West
Los Angeles Healthcare Center, University of Maryland
Brain and Tissue Bank, and the New York Brain Bank at
Columbia University through requests from the NIH
NeuroBioBank. All procedures were approved by the
Weill Cornell Medicine Human Biology Research Ethics
Committee.

Culture and treatment of primary microglia
Primary neonatal microglia were prepared from cerebral
cortices of 1–3 day old neonatal mice as previously
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described [70]. Cell suspensions of cerebral cortices were
seeded into a 75-ml flask and cultured in DMEM/F12
medium containing 10% FBS and 5 ng/ml GM-CSF.
Microglial cells floating on top of the astrocyte layer were
harvested at 12 DIV by shaking for 2 h at 200 rpm and
seeded onto 48 well (3 × 105/well) or 24 well (6 × 105/
well) culture plate in DMEM/ F12/10%FBS medium with-
out GM-CSF. Over 98% of the cells were determined to
be microglia (Iba-1 positive) by immunohistochemistry.
After seeding for 24 h, cells were washed once with
serum-free medium and treated with various reagents in
serum-free DMEM/F12 medium supplemented with
0.02% BSA. The reagents used in microglia treatment
were LPS (Sigma, L5293, Escherichia coli, 0111:B4); ATP
(sigma A2383); 25-hydroxycholesterol (Avanti#700019 or
Sigma H1015); cholesterol (Avanti#700100); 7 α-
hydroxycholesterol (Avanti#700034); VX-765 (Medchem-
express). Ent-25-hydroxycholesterol was synthesized as
described [71].

Cytokine ELISAs
Supernatants from cell cultures were collected and the con-
centrations of IL-1β (BioLegend#432601), IL-1α (Biole-
gend#433401), IL-6 (Bon Opus Biosciences#BE010059B),
and TNFα (Biolegend#430901) were determined by ELISA
according to the manufacturer’s instructions. All cytokine
levels were normalized to microglial protein levels deter-
mined by BCA assay.

ASC speck analysis
For measuring ASC speck formation, mouse primary
microglia were seeded at 0.15 × 106/well in 8-well cham-
ber Millicell EZ slides (Millipore PEZGS0816) and
allowed to attach overnight. The following day, the cells
were treated with 100 ng/ml LPS in the presence or ab-
sence of 10 μg/ml 25-HC over 16 h. The cells were fixed
in 4% paraformaldehyde and then washed three times in
PBS with Tween 20 (PBST). After permeabilization with
Triton X-100 and blocking with 10% bovine serum albu-
min in PBS, the cells were incubated with anti-mouse
ASC antibody (Cell Signaling#67824) overnight at 4 °C.
After washing with PBST, the cells were incubated with
secondary antibodies (Jackson ImmunoResearch) in PBS
for 30 min and rinsed in PBST. The slides were mounted
with a mounting solution containing DAPI. Images were
taken using a Nikon Eclipse 80i microscope. For each
treatment condition, 3–5 pictures taken from different
areas in the well at 20× magnification were used for
counting cells containing ASC speck. The total number
of cells was determined by visualizing DAPI positive nu-
clei. Each experimental condition was repeated more
than three times.

Immunoblotting
To detect CH25H protein, microsomal membranes were
prepared as described previously [66, 72], solubilized in
a small volume of buffer A (50 mM Tris-Cl, pH 7.4, 1
mM EDTA, 0.05% (w/v) SDS), mixed with an equal
amount of HMG-CoA solubilization buffer (62.5 mM
Tris-Cl, pH 6.8, 15% SDS, 8M urea, 10% glycerol, 100
mM dithiothreitol). A total of 100 μg lysate was incu-
bated with NuPAGE LDS sample buffer at 37 °C for 20
min followed with separation by NuPAGE 4-12% Bis-
Tris gel and transferring to nitrocellulose membrane
(Amersham Biosciences). For other proteins, cell lysates
(~40 μg of protein/lane) were resolved in 4-20% Bis-Tris
gels and transferred to nitrocellulose membranes. Blots
were incubated with antibodies at 4 °C overnight
followed by horseradish peroxidase-coupled secondary
antibodies and ECL developing kits (Amersham Biosci-
ences). The images were taken using Bio-Rad Molecular-
Imager ChemiDoc XRS+ and densitometry of the bands
was measured with Bio-Rad Image lab software and all
values were normalized to β-actin or glyceraldehyde-3-
phosphate dehydrogenase (GAPDH). Antibodies used
for immunoblotting were mouse anti-human CH25H
(hybridoma supernatant, neat, kindly provided by Dr.
David Russell, University of Texas, Southwestern med-
ical center) [66], mouse anti-GAPDH antibody (Gene-
Tex, GT239), mouse-anti-β-actin (GeneTex, GT5512),
mouse anti-human 6E10 for full length APP (Covance,
SIG393206), rabbit anti-mouse ASC antibody (Cell Sig-
naling#67824), mouse anti-NLRP3 (AdipoGen, Cryo2,
AG-20B-0014-C100), mouse anti-GM130 (Santa Cruz,
sc-55591), rabbit anti-IL-1β (Abcam, ab9722).

Quantification of 25-hydroxycholesterol
Primary microglia were prepared and treated as de-
scribed above. Media were collected and frozen at
−80 °C after removing floating cells. For each sample,
5 μL of methanol or 5 μL of deuterated internal standard
at a concentration of 500 ng/mL were added to 50 μL of
microglia growth media separately before being mixed
and then hydrolyzed using 1 N KOH at 90 °C for 2 h.
The samples were then liquid-liquid extracted with me-
thyl tert-butyl ether and the organic phase evaporated to
dryness under air at 50 °C. Sample residues were recon-
stituted in 100 μL of 80% methanol. Reconstituted sam-
ples (5 μl) were then injected onto an Eksigent microLC
200 system. The separation was effected with a Waters
Acquity 1 mm × 50mm C18 reverse-phase column at
50 μL/min over 7 min. Data were acquired by an
ABSciex QTRAP 5500 mass spectrometer using the
Turbo Spray source maintained at 300 °C. Spray voltage
was maintained at 4000 volts, curtain gas at 40 L/min,
gas 1 at 30 L/min, and gas 2 at 30 L/min. Chromato-
graphic peak areas of transition 385.4/367.4 (CE = 25 V,
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DP = 60 V) were integrated and quantified using Multi-
Quant 3.0 software (ABSciex).

RNA isolation, real-time RT-PCR and nanostring analysis
Total RNA was isolated from primary microglia or
mouse brain tissue with the PureLink RNA mini kit
(Invitrogen#12183018A) and reverse transcribed to
cDNA using SuperScript IV VILO Master Mix with ezD-
Nase Enzyme (Thermo Fisher, # 11766050) following
the manufacturer’s protocol. Quantitative real-time PCR
was performed using Taqman gene expression assays
and gene expression master mix (Applied Biosystems,
#4369016). The changes in gene expression were nor-
malized to β-actin or glyceraldehyde-3-phosphate de-
hydrogenase (GAPDH).

Statistical analysis
Data are expressed as mean ± SEM. Significance was
assessed with Student’s t test, one-way or two-way
ANOVA followed by Tukey multiple comparisons test
or Bonferroni’s post hoc test using Prism version 8.0
software (GraphPad).

Results
CH25H is upregulated in human AD brain and AD-related
transgenic mouse brain
We first examined the expression of CH25H in post-
mortem human AD brain tissue. Using quantitative
PCR, we observed that the level of CH25H mRNA was
significantly upregulated in frontal cortical tissue of the
AD brain (n = 14) compared to age-matched (non-AD)
controls (n = 9, p < 0.05) (Fig. 1a, all subjects were age >
80 and both genders were included). The protein level of
CH25H was also increased in AD brain tissue as de-
tected by Western blot using a CH25H antibody (Fig.
1b). The increased levels of CH25H mRNA and protein
were also observed in the frontal cortex of 4-month-old
APPPS1-21 mice bearing amyloid plaques [65] (Fig. 1c,
d, e). We further examined the expression of CH25H in
PS19 mice expressing the pathogenic human P301S tau
mutation at 9 months of age bearing massive tau path-
ology, inflammation, and neurodegeneration in the brain
[73]. Compared to their age-matched non-tg littermates,
we detected an increase of CH25H mRNA in the brain
of PS19 tg mice (Fig. 1f). Moreover, when we measured
CH25H mRNA levels in the frontal cortex of P301S tau
transgenic mice that are homozygous for human APOE2
(TE2), APOE3 (TE3), APOE4 (TE4) or with no expres-
sion of apoe (TEKO) using nanostring analysis, we found
that TE4 mice, an aggressive mouse model showing the
strongest brain neurodegeneration and neuroinflamma-
tion [43], express significantly higher levels of CH25H
mRNA than TEKO mice (Fig. 1 g). Together, these data
suggest that CH25H expression is upregulated in the

human AD brain and mouse brain when there is prom-
inent amyloid or tau pathology and neuroinflammation.

LPS stimulates 25-HC production and CH25H expression
in primary microglia
In macrophages, the TLR4 agonist lipopolysaccharide
(LPS) stimulates expression of CH25H and production of
25-HC [49]. In the central nervous system, CH25H is
mainly expressed in microglia, the counterpart of periph-
eral macrophages, with very limited expression, if any, in
other brain cell types, based on the Stanford transcrip-
tome database generated by the Barres group (http://
www.brainrnaseq.org) (Supplemental Fig. 1a). To explore
a potential role for CH25H and its oxysterol product 25-
HC in microglia-mediated innate immunity, we first mea-
sured 25-HC production by LC/MS in cultured microglia
isolated from the brain tissue of neonatal wild type mice
in response to stimulation by LPS. A time- and dose-
dependent increase of 25-HC production was observed in
the cell lysate and medium of LPS-treated microglia com-
pared to untreated microglia (Fig. 2a, b). As measured by
qPCR, LPS stimulated the expression of the pro-
inflammatory cytokines IL-1β and TNFα as well as
inflammasome genes such as NLRP3. It also potently up-
regulated CH25H mRNA in microglia (≥50-fold) (Fig. 2c).
The increase in CH25H expression induced by LPS was
further confirmed by Western blot using a CH25H spe-
cific antibody (Fig. 2c, insert). We next evaluated the
effects of LPS on CH25H expression in the mouse in vivo.
When wild type mice were treated with LPS (8.2mg/kg
via i.p.) for 24 h, a marked increase in CH25H mRNA was
detected in the hippocampus and cerebral cortex of LPS-
treated mice compared to vehicle-treated mice (Fig. 2d).
In contrast, the expression of CYP27a1 or CYP7b1 (two
other enzymes involved in the cholesterol:oxysterol meta-
bolic pathway) was not influenced by LPS treatment (Fig.
2d), suggesting that the induction of CH25H by LPS was
highly specific. These results demonstrate that the produc-
tion of 25-HC and the expression of CH25H are highly re-
sponsive to TLR4 stimulation in cultured primary
microglia as well as in mouse brain in vivo.

Depletion of 25-HC selectively attenuates LPS-induced IL-
1β expression in primary microglia
To examine whether 25-HC is involved in the inflamma-
tory response of microglia, we eliminated 25-HC pro-
duction using microglia prepared from CH25H
knockout (KO) mice (Supplementary Fig. 1b). When
WT or CH25H KO microglia were treated with LPS, we
observed a significant reduction in the level of IL-1β se-
creted into the medium of CH25H KO microglia com-
pared to WT microglia (Fig. 3a). The levels of IL-1α, a
cytokine often co-released with IL-1β, were also reduced
(Fig. 3b). In contrast, the production of TNFα (Fig. 3c)
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or IL-6 (not shown) were similar in both WT and
CH25H KO cells treated with LPS. The addition of 25-
HC to CH25H KO microglia fully rescued the attenu-
ated IL-1β/α production observed in CH25H KO micro-
glia to a comparable level as WT microglia (Fig. 3d).
These data suggest that 25-HC contributes to the LPS-
triggered IL-1β production by microglia. To directly
evaluate the effect of 25-HC on IL-1β/α production, we
treated WT microglia with 25-HC alone or in combin-
ation with LPS. Compared to LPS treatment alone, the
addition of 25-HC in the presence of LPS resulted in a

marked dose-dependent increase of microglial IL-1β and
IL-1α secretion while 25-HC treatment alone had no ef-
fect (Fig. 3e).
Mature IL-1β (17 kDa) is produced from its 31 kDa

pro-IL-1β by the action of the protease caspase-1, which
is in turn produced by the inflammasome complex; the
mature cytokine is then rapidly secreted into the
medium. We next examined the effects of 25-HC on the
level of pro-IL-1β protein remaining in cells and mature
IL-1β protein released into the medium by Western
blotting. LPS treatment markedly increased the cellular

Fig. 1 CH25H expression is increased in AD brain and AD transgenic mouse brain bearing amyloid or tau pathology. a, b Expression of CH25H at
mRNA (a) or protein (b) levels in the brain tissue of AD patients vs age-matched non-demented controls. CH25H protein levels were normalized
by β-actin with p = 0.06 (statistically analyzed using unpaired Student t test). c, d Expression of CH25H at mRNA (c) or protein (d) in APPPS1
transgenic mouse brain vs. age-matched non-tg littermates. e Quantification of d showing protein levels for CH25H, ASC, and NLRP3 by normalization
to β-actin. f Expression of CH25H mRNA in PS19 tau P301S transgenic mouse brain vs non-tg littermates. g Expression of CH25H mRNA in TE2, TE3,
TE4, and TEKO mouse brain. Statistical significance was determined by Student t test with *p < 0.05, **p < 0.01 or ***p < 0.005 in a, c, e, and f, or by
ordinary one-way ANOVA with Dunnett’s multiple comparisons test **p < 0.01 in g
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level of pro-IL-1β as well as the inflammasome proteins
NLRP3 and ASC1, resulting in a limited amount of 17
kDa IL-1β produced and secreted into the medium.
However, the addition of 25-HC markedly and dose-
dependently stimulated the release of active 17 kDa IL-
1β into the medium (Fig. 3f). The intracellular protein
levels of unprocessed pro-IL-1β, NLRP3, or ASC were
not influenced by the presence of 25-HC (Fig. 3f).
Therefore, 25-HC may regulate IL-1β production at a
posttranslational level. Together, these results suggest
that 25-HC modulates LPS-activated inflammatory
responses by selectively promoting mature IL-1β
production.

APOE4-expressing microglia show exaggerated IL-1β
production in response to LPS and 25-HC treatment
Previous studies have shown that APOE isoforms differ-
entially influence the innate immune response of micro-
glia [32, 33]. We, therefore, examined the effects of the
common APOE isoforms on both LPS and 25-HC-

enhanced production of IL-1β in microglia. Microglia
were prepared from neonatal mice expressing human
APOE2 (E2), APOE3 (E3), or APOE4 (E4) at the mouse
APOE locus [67–69]. Consistent with previous reports,
E4-expressing microglia produced higher levels of IL-1β
than E2-expressing cells or APOE deficient cells (EKO)
after 6 h (Fig. 4a) or 24 h (Fig. 4b) following LPS treat-
ment alone. As expected, 25-HC dose-dependently in-
creased IL-1β production at 6 h (Fig. 4a) and at 24 h
(Fig. 4b). Strikingly, co-incubation with 25-HC resulted
in a marked potentiation of IL-1β production in E4-
expressing microglia compared to E2-expressing or EKO
microglia at each concentration of 25-HC tested (Fig. 4a
and b), resulting in significantly higher levels of IL-1β
production from E4 microglia than that from E2 or EKO
microglia (Fig. 4a and b). Although LPS induced greater
IL-6 production in E4-expressing microglia, 25-HC
treatment did not influence the production of IL-6 (Fig.
4c). We further compared the IL-1β-inducing activity of
25-HC between E4 and E3 microglia. A higher amount

Fig. 2 LPS stimulates 25HC production and CH25H expression in primary microglia and in mouse brain. a LPS stimulates 25-HC production and
secretion in primary microglia in a time- and dose-dependent manner. Primary microglia were treated with LPS (0, 10, and 100 ng/ml) for 6 and
24 h. The levels of 25-HC in cells (a) and media (b) were determined by GC-MS. ****p < 0.001 by ordinary one-way ANOVA. c LPS induces the
expression of CH25H, IL-1β, TNFα, and NLRP3 inflammasome mRNA in primary microglia. The comparative gene expressions were determined by
qPCR using RNA extracted from primary microglia with or without 10 ng/ml LPS treatment for 24 h. Insert: CH25H protein level in CH25H+/+ or
CH25H-/- primary microglia treated with or without 10 ng/ml LPS. It is a representative result of two independent experiments. d Gene expression
analysis of CH25H, IL-1β, TNFα, Cyp7b, and Cyp27a1 in brain tissue of C57BL6 mice treated with 8.2mg/kg LPS (n = 3) for 24 h as determined by qPCR.
*p < 0.05,**p < 0.01, ***p < 0.005 by Student t test comparing LPS-treated mouse brain to saline-treated control brain
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of secreted (extracellular) IL-1β was observed in E4
microglia than in E3 microglia treated with both LPS
and 25-HC (Fig. 4d). Consistently, we detected more
mature IL-1β protein (17kd) in the medium of E4 micro-
glia than in the medium of E3 microglia, while the levels
of intracellular pro-IL-1β did not increase in cells treated
with 25-HC (Fig. 4e). Together, these data demonstrate
that apoE isoforms differentially influence the ability of
25-HC to augment the secretion of IL-1β production in
LPS-activated microglia and the presence of APOE4
markedly augments the effects of 25-HC in promoting
IL-1β production, shifting the dose-response for 25-HC
substantially to the left. Lastly, the production of 25-HC

by E2 or E4-expressing microglia was measured. We
found that E4 microglia produced a greater amount of
25-HC measured in both cells and medium than E2
microglia when treated with LPS (Fig. 4f).

Augmentation of LPS-induced IL-1β induction by 25-HC is
enantioselective
To examine the specificity of 25-HC, we first tested the ef-
fects of both the 25-HC precursor cholesterol and another
cholesterol metabolite 7α-HC on IL-1β production. Com-
paring to the promoting effects of 25-HC on IL-1β/α pro-
duction, coincubation of cholesterol or 7α-HC with LPS
at a similar concentration as 25-HC did not promote LPS-

Fig. 3 25-HC selectively amplifies LPS-induced IL-1β expression and secretion. a-c WT and CH25H KO primary microglia were treated with LPS (0, 0.1,
1, 10, 100 ng/ml) for 24 h. The levels of secreted IL-1β (a), IL-1α (b), and TNFα (c) in the medium were measured by ELISA. d The levels of secreted IL1β
from WT and CH25H KO microglia treated with LPS (10 ng/ml) with or without 25-HC (10μg/ml) were measured by ELISA. e Primary microglia were
treated with 10 ng/ml LPS in the presence of different concentrations of 25-HC for 24 h. The levels of IL-1β in the media were determined by ELISA
and (f) the levels of intracellular pro-IL1β and mature IL1β secreted in the media as measured by Western blotting. Statistical analyses were
determined by multiple t test in a, b, c, d; one-way ANOVA in e. *p < 0.05, **p < 0.01, ***p < 0.005, ****p < 0.001. The data shown are representative of
three or more independent experiments
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induced IL-1β/α production in microglia (Fig. 5a, b, c).
We further evaluated the IL-1β-inducing activity of ent-
25-HC, the inactive enantiomer of 25-HC [74], and found
that ent-25HC exhibited only very weak IL-1β-inducing
activity and was at least an order of magnitude less potent
than 25-HC (Fig. 5d). These results demonstrate that the
IL-1β induction by 25-HC is enantioselective and thus
likely mediated via a specific protein target(s).

25-HC induces IL-1β via activation of caspase-1 and the
inflammasome
Active 17kD IL-1β is produced from pro-IL-1β after pro-
teolytic cleavage by caspase-1. Formation of Adaptor

protein apoptosis-associated Speck-like protein with a
CARD (ASC), recognized as large perinuclear cellular
aggregates, is a hallmark of inflammasome activation
that correlates with caspase-1 cleavage and release of
mature IL-1β [75]. To further address if 25-HC activates
the inflammasome in microglia, we compared the num-
ber of cells containing ASC speck in microglia treated
with LPS alone or LPS combined with 25-HC. The num-
ber of ASC speck-containing cells significantly increased
following treatment with LPS and 25-HC compared to
LPS alone (Fig. 6a). 25-HC treatment alone, however,
did not induce ASC speck formation (Fig. 6a, b). We fur-
ther found that the induction of ASC speck by LPS and

Fig. 4 Exaggerated IL-1β and 25-HC production in LPS-activated microglia expressing human ApoE4. The levels of IL-1β or IL-6 secreted into the
medium in apoE2- or apoE4-expressing microglia or apoE KO microglia treated with LPS (10 ng/ml) and 25-HC (0, 1, 2, or 10 μg/ml) for 6 h (a) or
24 h (b and c). The levels of IL-1β secreted in the medium of apoE3- or apoE4-expressing microglia after 24 h treatment with LPS (10 ng/ml) and
25-HC (10 μg/ml) (d, e) and the levels of 25-HC in these cells or medium were determined by GC-MS (f). Statistical significances were determined
by two-way ANOVA with multiple comparisons in a, b, c, d, or unpaired Student t test in f. *p < 0.05, **p < 0.01, ***p < 0.005, ****p < 0.001,
respectively. The data shown are representative of three or more independent experiments
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25-HC is dependent on TLR4 because no ASC speck
formation was detected in TLR4 KO microglia treated
with LPS and 25-HC (Fig. 6c, d). The induction of IL-1β
by LPS and 25-HC was also markedly reduced or elimi-
nated in TLR4 KO microglia (Fig. 6c, d). These data sug-
gest that 25-HC augments IL-1β secretion via activation
of the inflammasome in a TLR4-dependent manner.
Activation of the inflammasome, such as NLRP3, trig-

gers oligomerization and activation of caspase-1 that
cleaves pro-IL-1β to biologically active IL-1β. To exam-
ine if the induction of IL-1β by 25-HC is caspase-1-
dependent, primary microglia were treated with LPS and
25-HC in the presence of VX765, a cell-penetrant pro-
drug of VRT-043198 that selectively inhibits the
caspase-1 subfamily of cysteine proteases [76]. Treat-
ment with VX765 completely inhibited the effect of 25-
HC on IL-1β production (Fig. 6e), suggesting that 25-
HC induces IL-1β production by activating the inflam-
masome and caspase-1.
Potassium efflux is one of the common mediators of

inflammasome activation in response to diverse stimuli
[15]. When potassium efflux was blocked by a high con-
centration of extracellular KCl, we found that the

induction of IL-1β by LPS and 25-HC was effectively
prevented by 50 mM KCl (Fig. 6f). This result confirms
that activation of the inflammasome by LPS is aug-
mented by 25-HC and further suggests that 25-HC regu-
lates IL-1β induction upstream of potassium efflux.

Discussion
CH25H and 25-HC in innate immunity
25-hydroxycholesterol (25-HC) is an enzymatically de-
rived oxidation product of cholesterol, which is pro-
duced primarily by circulating and tissue-resident
macrophages and which has been reported to have both
anti-inflammatory as well as pro-inflammatory effects in
various model systems of innate immunity [50]. The en-
zyme cholesterol-25-hydroxylase (CH25H), which cata-
lyzes the synthesis of 25-HC from cholesterol is
markedly upregulated in macrophages following stimula-
tion with interferon and the TLR4 ligand, LPS [49]. 25-
HC has also been reported to regulate cholesterol me-
tabolism by suppressing cholesterol biosynthesis via
SREBP processing and facilitating reverse cholesterol
transport via activation of liver X receptors (LXRs) and
various downstream genes [77]. 25-HC has been shown

Fig. 5 IL-1β/α induction by 25-HC is highly specific. The levels of secreted IL-1β (a), IL-1α (b), or IL-6 (c) in the medium of primary microglia treated
with LPS (10 ng/ml) in the presence of 25-HC (10 μg/ml), cholesterol (10μg/ml), or 7α-HC (10 μg/ml) for 24 h. d Ent-25-HC (10 μg/ml) has much weaker
effects in augmenting IL-1β production in primary microglia treated with LPS (10 ng/ml) for 24 h. The levels of cytokines were determined by ELISA.
Statistical significances were determined by ordinary two-way ANOVA with Tukey multiple comparisons test. *p < 0.05, **p < 0.01, ***p < 0.005, ****p <
0.001. The data shown are representative of two or more independent experiments
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to be a potent antiviral oxysterol and likely mediates the
antiviral action of interferons against a variety of envel-
oped DNA and RNA viruses [50, 78]. Although 25-HC’s
anti-inflammatory actions have been widely documented
(see below), its pro-inflammatory effects have also been
reported by multiple groups. Rosklint and colleagues
[79] first demonstrated that 25-HC, even at very low
concentrations, increased IL-1β mRNA expression and
secretion following LPS challenge in human monocyte-
derived macrophages, a finding reminiscent of our data
in primary murine microglia. Several subsequent studies
have also reported pro-inflammatory effects of 25-HC in
peripheral macrophages. For example, Gold et al. re-
ported that 25-HC acts as an amplifier of inflammation
in macrophages via an AP-1-mediated mechanism, con-
tributing to the tissue damage in mice following influ-
enza infection [80]. CH25H deficient mice have also
been shown to have decreased inflammatory-mediated
pathology and death following influenza infection [80],

reduced immune responses both following experimental
autoimmune encephalomyelitis (EAE) [81] and in a mouse
model of X-linked adrenoleukodystrophy (X-ALD) [82],
again supporting a pro-inflammatory and potentially
“toxic” function of 25-HC in inflammatory and neurode-
generative disorders. Moreover, 25-HC was recently iden-
tified as an integrin ligand and shown to directly induce a
pro-inflammatory response in macrophages [83]. Finally,
following our submission, Russo et al. have very recently
shown that 25-HC is required for the obesity-induced ex-
pression of pro-inflammatory genes (including IL-1β) in
adipose tissue macrophages (ATMs) as well as in bone
marrow-derived macrophages [84]. These observations
clearly suggest pro-inflammatory actions of 25-HC in re-
sponse to immune stimuli in macrophages such as we
have observed in microglia. It is not uncommon to see
such dual actions of various immune modulators. For ex-
ample, some pro-inflammatory cytokines and chemokines
(such as IFN-γ, IL-2, CCL2, and CXCL12) may act as

Fig. 6 25-HC induces inflammasome activation. ASC specks in microglia treated with LPS (10 ng/ml) without or with 25-HC (10 μg/ml) were stained by
ASC antibody (green) and DAPI for nuclei (blue) (a). Quantification of ASC specks in microglia treated with medium alone (ctl), medium-containing LPS
(10 ng/ml), 25-HC (10μg/ml), or LPS (10 ng/ml) plus 25-HC (10 μg/ml) (b). WT or TLR4 deficient microglia were treated with LPS (10 ng/ml) and 25-HC
(10 μg/ml) for 24 h followed by ASC antibody staining (green) and DAPI (blue) (c) or ELISA measurements of secreted IL1β (d). Inhibition of caspase 1
by VX765 (e) or a high concentration of potassium (50mM) (f) in the medium prevents 25-HC-dependent IL-1β production in microglia treated with
10 ng/ml LPS for 24 h. Statistical analyses were determined by ordinary two-way ANOVA with Tukey multiple comparisons test in c, e and f or Student
t test in d. *p < 0.05, **p < 0.01, ***p < 0.005, ****p < 0.001. The data shown are representative of three or more independent experiments
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anti-inflammatory mediators, while the anti-inflammatory
mediator TGF-β can become pro-inflammatory under cer-
tain conditions [85]. Such a dual action of certain immune
modulators could prepare the immune system to respond
to a stressor (pro-inflammatory effects) and subsequently
restore homeostasis (anti-inflammatory effects) as pro-
posed by Cruz-Topete and Cidlowski for glucocorticoids
[86]. Nonetheless, collectively, these observations of both
anti- and pro-inflammatory effects of 25-HC, including
our current study, strongly suggest that 25-HC may serve
as an important mediator of the innate immune response
in the brain.
In our study, we show that CH25H is expressed in

microglia in vitro and further demonstrate that the
TLR4 agonist LPS induces a marked upregulation of
CH25H expression and 25-HC production and secretion.
This increase in CH25H expression and 25-HC produc-
tion in microglia was accompanied by corresponding in-
creases in the secretion of the inflammatory cytokines
IL-1β, IL-1α, and TNFα. Reductions in both LPS-
stimulated IL-1β and IL-1α secretion (but not TNFα se-
cretion) were observed in CH25H-deficient microglia,
suggesting an autocrine or paracrine effect of 25-HC in
amplifying pro-inflammatory signaling involving IL-1β/α
in microglia (see below). Treatment of CH25H-deficient
microglia with 25-HC restored the effect of LPS on IL-
1β/α secretion. We also observed an increase in CH25H
mRNA following LPS treatment of wild-type mice
in vivo, consistent with the in vitro microglia data.

Possible roles of CH25H and 25-HC in Alzheimer’s disease
CH25H is located on chromosome 10q23, a region
strongly linked to AD [54]. In a large scale AlzGene
meta-analysis including 1282 AD patients and 1312 con-
trols from five independent populations (French,
Russian, USA, Swiss, Mediterranean), a significant asso-
ciation of rs13500 ‘T’ allele and haplotypes in the
CH25H promoter was previously reported to be associ-
ated with the risk of developing AD and with different
rates of Aβ/amyloid deposition [54]. However, the asso-
ciation of this rs13500 CH25H promoter polymorphism
was not found in two subsequent studies [87, 88] nor
has an association between CH25H and AD risk be ob-
served in several large GWA studies, making this associ-
ation “suggestive” at best [89–91]. More recently, several
genome-wide expression studies carried out in models
of accelerated aging, AD pathology and neuroinflamma-
tion have all identified CH25H as being significantly up-
regulated in the brain [58–60]. Ofengeim et al. found
that the upregulation of microglial CH25H expression in
APP/PS1 mice depends on RIPK1, a death-domain con-
taining Ser/Thr kinase-mediating downstream signaling
of type I TNFα receptor [61]. Here, we also show that
CH25H is upregulated in AD brain tissue compared to

age-matched controls as well as in three mouse models
of AD pathology; APP/PS1 transgenic mice, tau trans-
genic mice (PS19) and a recently described
APOE4xP301S (TE4) tau transgenic mouse model of ac-
celerated tau pathology and neurodegeneration [43]. Fi-
nally, it is important to underscore that CH25H has
been shown to be upregulated in a specific subset of
microglial genes associated with neurodegeneration,
called disease-associated microglia (DAM), in several
neurodegenerative disease models (see Supplementary
Fig. 2a) based on the public database published by Fried-
man et al. 2018 [92]. Recently, a list of signature genes
upregulated in a phagocytic microglia subset (neurode-
generation-associated, or DAM) reported by Krasemann
et al. also include CH25H, whose upregulation is par-
tially dependent on the presence of apoE (Supplemen-
tary Fig. 2b) [63]. Moreover, an increased (>3-fold)
expression of CH25H was reported in the DAM gene
dataset reported by Keren-Shaul and colleagues [62].
These findings suggest that 25-HC may be involved in
AD pathogenesis, especially given its reported pro-
inflammatory properties and our data on its marked po-
tentiation of cytokine expression and secretion from
microglia stimulated by the TRL4 agonist, LPS.

CH25H, 25-HC, and APOE genotype
Given the important role of APOE4 as a genetic risk fac-
tor for AD and its reported role in regulating innate im-
munity in the brain [93], we examined whether CH25H
expression and 25-HC production in microglia were af-
fected by APOE genotype. First, we found that apoE4-
expressing microglia produced significantly more 25-HC
in response to LPS treatment than apoE2-expressing
microglia. We also found that apoE4-expressing micro-
glia produced more IL-1β and IL-6 in response to LPS
treatment as has been previously reported [33]. To our
surprise, co-incubation of 25-HC with LPS significantly
augmented IL-1β production in apoE4-expressing
microglia compared to either apoE2-expressing micro-
glia or apoE-deficient (knockout) microglia, markedly
shifting the dose-response curve for 25-HC to the left.
In fact, relatively low concentrations of 25-HC (≤2.5 μM)
stimulated IL-1β production in apoE4-expressing (vs.
apoE2-expressing) microglia, again demonstrating that
25-HC’s pro-inflammatory effects in this in vitro model
of innate immunity are APOE isoform-dependent. Previ-
ous work has shown that compared with APOE3 homo-
zygotes [32], treatment with LPS induces higher levels of
various cytokines (including IL-1β) in the serum of hu-
man APOE4 carriers and in the brains of apoE4-
expressing targeted replacement mice [33]. In vitro,
apoE4-expressing microglia exhibit higher “innate im-
mune reactivity” following LPS treatment measured by
both cytokine and NO production [33]. Moreover,

Wong et al. Journal of Neuroinflammation          (2020) 17:192 Page 12 of 17



APOE genotype alters glial activation in response to LPS
treatment [94]. Together with our in vivo data in several
AD mouse models demonstrating higher brain levels of
microglial and brain CH25H mRNA, we hypothesize
that 25-HC may be an important pro-inflammatory
chemical messenger whose production and secretion will
greatly amplify cytokine secretion in apoE4-expressing
microglia in a paracrine or autocrine manner (Supple-
mentary Fig. 3), and may thus contribute either indir-
ectly or even directly to the neuroinflammation and
neurodegeneration that characterize AD. In this regard,
Jang and colleagues [82] have recently shown that 25-
HC has pro-inflammatory actions in a study of X-linked
adrenoleukodystrophy (X-ALD), a progressive neurode-
generative disorder characterized by the accumulation of
very long-chain fatty acids. They observed that 25-HC is
markedly increased in X-ALD brain tissue, promotes IL-
1β production and neuroinflammation, and is directly
neurotoxic when administrated to the brain in vivo [82].
Both 25-HC and apoE are also important regulators of

lipid metabolism [95]. 25-HC regulates cholesterol ef-
flux, sterol synthesis, fatty acid synthesis, and sphingo-
lipid metabolism [96]. 25-HC has also been found to
regulate lipid homeostasis and lipid droplet formation in
macrophages [97]. Whether altered cholesterol metabol-
ism contributes to the augmented “inflammatory
response” observed following treatment of LPS in acti-
vated microglia with 25-HC remains to be determined.
Nugent et al. recently reported that CH25H is one of the
genes induced by demyelination partially in an apoE-
dependent manner [29]. Interestingly, 25-HC was also
previously reported to increase the secretion of apoE by
HepG2 cells, likely by upregulation of apoE mRNA [98].
These observations indicate a potential interaction be-
tween 25-HC and apoE expression/secretion, which
needs to be further investigated.

25-HC, IL-1β production, and inflammasome activation
Consistent with the work of Jang et al. [82], we provide
evidence supporting a pro-inflammatory role of 25-HC
in microglia by promoting mature 17kD IL-1β produc-
tion via inflammasome activation. However, we did not
observe any change of pro-IL-1β mRNA or protein levels
in 25-HC treated microglia, suggesting that 25-HC aug-
ments cytokine production via a posttranslational mech-
anism. The induction of IL-1β production is dependent
on two signals: first, activation of TLR4 on the cell sur-
face by stimuli such as LPS leading to IL-1β mRNA gen-
eration and pro-IL-1β production. A second process
derives from inflammasome activation by stimuli such as
ATP, which leads to activation of caspase-1, a protease
that cleaves pro-IL-1β into mature IL-1β. We found that
25-HC efficiently amplifies IL-1β production in the pres-
ence of LPS; however, 25-HC does not activate IL-1β

production by itself at either the mRNA or protein level.
These observations suggest that 25-HC might act as a
second activation signal in microglia and directly or in-
directly activate inflammasome activity upstream of
caspase-1 (shown in Supplementary Fig. 3). In fact, we
observed markedly reduced IL-1β production when 25-
HC and LPS were coincubated in the presence of the
caspase-1 inhibitor VX765 or when K+ efflux was
blocked by high concentrations of extracellular K+.
Again, these data suggest that augmentation of inflam-
masome activity and IL-1β production by 25-HC occurs
post-translationally upstream of K+ efflux. It remains to
be further determined if 25-HC augments IL-1β produc-
tion via activation of NLRP3 or another inflammasome.
Our observations, together with Jang et al. [82], are

not consistent with the previous report by Reboldi et al.
[99]. In activated BMDMs, they found that low concen-
trations of 25-HC inhibited IL-1β production and that
CH25H deficiency caused augmented transcription and
secretion of the cytokine IL-1β. They also showed that
25-HC regulates IL-1β production via repressing SREBP-
mediated transcription [99]. Following this, Dang et al.
later showed that up-regulating CH25H and 25-HC pro-
duction reduce inflammasome activity and IL-1β levels
in LPS-activated macrophages [100]. The discrepancy
between the results of Reboldi et al. [99] and our data
may be due to differences in treatment conditions (such
as LPS or 25HC concentrations, treatment duration
time, etc.) and the different cell types used in our re-
spective experiments. In our study, we used a relatively
high concentration of 25-HC to see whether we could
rescue the CH25H knockout microglial phenotype. We
wanted to make sure that we had adequate extracellular,
but importantly intracellular, concentrations of 25-HC.
It is important to appreciate that this concentration of
25-HC, however, did not by itself stimulate IL-1β or IL-
1α expression/secretion from microglia in the absence of
co-treatment with LPS. We would also underscore that
the effects of 25-HC in potentiating IL-1β/α expression/
secretion in microglia are also observed at much lower
concentrations (e.g., 1 μg/ml see Fig. 5d) as well as re-
ported by Rosklint et al. in human macrophages [79].
Moreover, the effects of 25-HC are stereospecific in that
ent-25-HC (the inactive enantiomer of 25-HC) is rela-
tively inactive in amplifying IL-1β secretion even at the
same high concentration of 25-HC used in our rescue
experiments (see Fig. 5d).

Conclusion
With advances in genomic sequencing and bioinformat-
ics, more genetic risk factors and related molecular path-
ways have been identified as potentially important in the
etiology and pathogenesis of AD. These risk genes asso-
ciated with late-onset AD point to both changes in lipid
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metabolism and immune mechanisms as contributing to
AD pathology. However, exactly how the components of
these distinct essential cellular pathways contribute to
the progressive neurodegeneration in AD remains un-
clear. Our present study has identified an interaction
among APOE genotype, cholesterol metabolism to the
oxysterol 25-HC and the cytokine IL-1β in microglia.
Our data suggest that microglial expression and
activation of the enzyme CH25H and consequent 25-HC
production may be an important mediator of the pro-
gressive neuroinflammation that characterizes neurode-
generative disorders like AD. Importantly, the pro-
inflammatory effects of 25-HC we observe in primary
microglia are APOE isoform-dependent, as apoE4-
expressing microglia secrete more 25-HC and are mark-
edly more sensitive to the pro-inflammatory actions of
25-HC than apoE2 or apoE3-expressing microglia. Thus,
the immune oxysterol 25-HC may play an important
role in the pathogenesis, i.e., the neuroinflammation and
neurodegeneration, that characterize AD and perhaps
other neurodegenerative disorders.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12974-020-01869-3.

Additional file 1: Figure S1. a). Expression of CH25H, Cyp27a1 and
Cyp7b1 in different cell types in brain based on the Stanford
transcriptome database generated by Barres and colleagues (http://www.
brainrnaseq.org). b). GC-MS analysis of 25-HC levels in the conditioned
medium (left) and total protein levels of cell lysate of primary mouse
microglia from wild-type and CH25H-/- mice treated with LPS (0, 0.1, 1,
10, 100, 1000ng/ml). Figure S2a. Differential expression of CH25H or its
ortholog in a comparison within one of the datasets. Fold-Changes are
relative to non-transgenic, untreated, normal, adult, cortical or parenchy-
mal microglia as appropriate, or, for the last two comparisons, relative to
non-myeloid CNS cells (Friedman, et al Cell Report, 2018) http://research-
pub.gene.com/BrainMyeloidLandscape. 2b. Relative CH25H gene expres-
sion in nonphagocytic (NP) and phagocytic (P) wild-type (WT) or apoe-/-
(KO) microglia by RNA seq analysis data generated by Krasemann et al,
(Immunity, 47:566, 2017). Figure S3. A schematic diagram for the mech-
anism associated with 25-HC in amplifying IL-1b production via inflam-
masome activation.
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