110 research outputs found

    Beta cortical oscillatory activities and their relationship to postural control in a standing balance demanding test: influence of aging

    Get PDF
    Background: Age-related changes in the cortical control of standing balance may provide a modifiable mechanism underlying falls in older adults. Thus, this study examined the cortical response to sensory and mechanical perturbations in older adults while standing and examined the relationship between cortical activation and postural control. Methods: A cohort of community dwelling young (18–30 years, N = 10) and older adults (65–85 years, N = 11) performed the sensory organization test (SOT), motor control test (MCT), and adaptation test (ADT) while high-density electroencephalography (EEG) and center of pressure (COP) data were recorded in this cross-sectional study. Linear mixed models examined cohort differences for cortical activities, using relative beta power, and postural control performance, while Spearman correlations were used to investigate the relationship between relative beta power and COP indices in each test. Results: Under sensory manipulation, older adults demonstrated significantly higher relative beta power at all postural control-related cortical areas (p \u3c 0.01), while under rapid mechanical perturbations, older adults demonstrated significantly higher relative beta power at central areas (p \u3c 0.05). As task difficulty increased, young adults had increased relative beta band power while older adults demonstrated decreased relative beta power (p \u3c 0.01). During sensory manipulation with mild mechanical perturbations, specifically in eyes open conditions, higher relative beta power at the parietal area in young adults was associated with worse postural control performance (p \u3c 0.001). Under rapid mechanical perturbations, specifically in novel conditions, higher relative beta power at the central area in older adults was associated with longer movement latency (p \u3c 0.05). However, poor reliability measures of cortical activity assessments were found during MCT and ADT, which limits the ability to interpret the reported results. Discussion: Cortical areas are increasingly recruited to maintain upright postural control, even though cortical resources may be limited, in older adults. Considering the limitation regarding mechanical perturbation reliability, future studies should include a larger number of repeated mechanical perturbation trials

    Development of a Logic Model for a Physical Activity–Based Employee Wellness Program for Mass Transit Workers

    Get PDF
    Transportation workers, who constitute a large sector of the workforce, have worksite factors that harm their health. Worksite wellness programs must target this at-risk population. Although physical activity is often a component of worksite wellness logic models, we consider it the cornerstone for improving the health of mass transit employees. Program theory was based on in-person interviews and focus groups of employees. We identified 4 short-term outcome categories, which provided a chain of responses based on the program activities that should lead to the desired end results. This logic model may have significant public health impact, because it can serve as a framework for other US mass transit districts and worksite populations that face similar barriers to wellness, including truck drivers, railroad employees, and pilots. The objective of this article is to discuss the development of a logic model for a physical activity–based mass-transit employee wellness program by describing the target population, program theory, the components of the logic model, and the process of its development

    Optical Recording Aspects of rf Magnetron Sputtered Iron-Garnet Films

    Get PDF
    The intrinsic magneto-optical readout performance in reflection is calculated for bismuth and cobalt-substituted iron-garnet films on a multilayer interference mirror at 800-, 633-, 488-, and 420-nm wavelengths and is compared with that of a trilayer medium composed of an antireflection layer, a rare-earth transition-metal film, and a metallic mirror. It is found, when disregarding inhomogeneities, like irregular domain shape, ripple of the magnetic anisotropy, and surface roughness, that iron garnets are superior to rare-earth transition-metal films at blue to near-ultraviolet wavelengths if operated at thicknesses where optical interference occurs in the magnetic layer. Optical transmittance at these thicknesses is sufficiently high so that multilevel recording media can be conceived. In contrast, the optical absorption of rare-earth transition-metal alloys is much higher so that only thicknesses much above interference conditions are feasible, thus precluding them from multilevel recording. This comparative study is supplemented by calculating the magneto-optical performance in reflection of a recently reported multilayer medium composed of an antireflection coating and a periodically repeated sandwich of 4-Å Co and 9-Å Pt layers. In contrast to conventional rare-earth transition-metal films, the magneto-optical Kerr effects of this material do not degrade when decreasing the wavelength from 800 to 400 nm, but still do not reach the performance of bismuth-iron garnets in the green to ultraviolet spectrum. For the garnet system Y3--xBixFe5O12 the spectra of the real and imaginary parts of the diagonal and off-diagonal component of the dielectric tensor εij are reported in the range of photon energies between 1 and 5 eV, i.e., 1240- and 248-nm wavelengths and a bismuth concentration up x=1.4 Bi3+ atoms per garnet formula. In addition, the off-diagonal components ε′12 and ε″12 are parametrized in terms of paramagnetic optical transitions, taking the spectra for x=1.25 as a typical example. Furthermore, optical and magneto-optical spectra are presented for Co 2+- and Co3+- substituted iron garnets and barium hexaferrite BaFe12O19. Finally, the spectral dependence of the magneto-optical figure of merit 2ΘFp/α of (Y,Bi)3Fe5O12 and amorphous TbFe is compared. Furthermore, high-resolution transmission electron micrographs and x-ray double-crystal diffractograms are presented that elucidate the perfect epitaxial alignment of single-crystalline iron-garnet films and the columnar morphology of polycrystalline iron-garnet films prepared by rf magnetron sputtering. The initial nucleation period of polycrystalline garnet films can be influenced by low-energy ion bombardment for improving the film texture. Under favorable sputtering conditions single- and polycrystalline bismuth-iron garnet films develop a perpendicular magnetic anisotopy. It is not yet clear whether sputtered iron-garnet films can meet the critical requirements on magnetic wall coercivity and magnetic remanence

    The Effects of Fire Fighting and On-Scene Rehabilitation on Hemostatis

    Get PDF
    Fire fighting is a dangerous occupation – in part because firefighters are called upon to perform strenuous physical activity in hot, hostile environments. Each year, approximately 100 firefighters lose their lives in the line of duty and tens of thousands are injured. Over the past 15 years, approximately 45% of line of duty deaths have been attributed to heart attacks and another 650-1,000 firefighters suffer non-fatal heart attacks in the line of duty each year. From 1990 to 2004, the total number of fireground injuries has declined, yet during this same period, the number of cases related to the leading cause of injury - overexertion/strain – remained relatively constant. It is well recognized that fire fighting leads to increased cardiovascular and thermal strain. However, the time course of recovery from fire fighting is not well documented, despite the fact that a large percentage of fire fighting fatalities occur after fire fighting activity. Furthermore, on scene rehabilitation (OSR) has been broadly recommended to mitigate the cardiovascular and thermal strain associated with performing strenuous fire fighting activity, yet the efficacy of different rehabilitation interventions has not been documented. Twenty-five firefighters were recruited to participate in a “within-subjects, repeated measures” study designed to describe the acute effects of fire fighting on a broad array of physiological and psychological measures and several key cardiovascular variables. This study provided the first detailed documentation of the time course of recovery during 2½ hours post-fire fighting. Additionally, we compared two OSR strategies (standard and enhanced) to determine their effectiveness.published or submitted for publicationnot peer reviewe

    High Intensity Functional Training (HIFT) and competitions: How motives differ by length of participation

    Get PDF
    High Intensity Functional Training (HIFT) is a unique fitness method that promotes an active lifestyle and has seen exponential and continual growth over the last two decades. Motivation to exercise is likely to change over time as individuals’ motives to initiate exercise may be different than those which motivate them to maintain an exercise program. The purpose of this study was to examine the motivational factors reported by individuals who actively engage in HIFT with varying length of participation and competition levels. 737 adults (32.4 ± 8.2 years) with more than three-months of HIFT experience completed an online version of the Exercise Motivation Inventory (EMI-2) survey. Those who had greater length of participation reported more motives associated with relatedness (i.e., affiliation, competition) and enjoyment, while those with less HIFT participation were more motivated by body-related variables (i.e., weight management). Further, motivational variables (e.g., social recognition, affiliation, challenge) varied depending on whether or not individuals had competed in an online qualifier. Understanding these differences in motivation may aid in exercise promotion, initiation, and adherence, and moreover promote long-term physical and mental health benefits

    Feeling of pleasure to high-intensity interval exercise is dependent of the number of work bouts and physical activity status

    Get PDF
    Objectives: To examine the affective responses during a single bout of a low-volume HIIE in active and insufficiently active men. Materials and methods: Fifty-eight men (aged 25.3 ± 3.6 years) volunteered to participate in this study: i) active (n = 29) and ii) insufficiently active (n = 29). Each subject undertook i) initial screening and physical evaluation, ii) maximal exercise test, and iii) a single bout of a low-volume HIIE. The HIIE protocol consisted of 10 x 60s work bouts at 90% of maximal treadmill velocity (MTV) interspersed with 60s of active recovery at 30% of MTV. Affective responses (Feeling Scale, -5/+5), rating of perceived exertion (Borg's RPE, 6-20), and heart rate (HR) were recorded during the last 10s of each work bout. A two-factor mixed-model repeated measures ANOVA, independent-samples t test, and chi-squared test were used to data analysis. Results: There were similar positive affective responses to the first three work bouts between insufficiently active and active men (p > 0.05). However, insufficiently active group displayed lower affective responses over time (work bout 4 to 10) than the active group (p 0.05). Conclusions: Insufficiently active and active men report feelings of pleasure to few work bouts (i.e., 3-4) during low-volume HIIE, while the affective responses become more unpleasant over time for insufficiently active subjects. Investigations on the effects of low-volume HIIE protocols including a fewer number of work bouts on health status and fitness of less active subjects would be interesting, especially in the first training weeks

    Moderate exercise and chronic stress produce counteractive effects on different areas of the brain by acting through various neurotransmitter receptor subtypes: A hypothesis

    Get PDF
    BACKGROUND: Regular, "moderate", physical exercise is an established non-pharmacological form of treatment for depressive disorders. Brain lateralization has a significant role in the progress of depression. External stimuli such as various stressors or exercise influence the higher functions of the brain (cognition and affect). These effects often do not follow a linear course. Therefore, nonlinear dynamics seem best suited for modeling many of the phenomena, and putative global pathways in the brain, attributable to such external influences. HYPOTHESIS: The general hypothesis presented here considers only the nonlinear aspects of the effects produced by "moderate" exercise and "chronic" stressors, but does not preclude the possibility of linear responses. In reality, both linear and nonlinear mechanisms may be involved in the final outcomes. The well-known neurotransmitters serotonin (5-HT), dopamine (D) and norepinephrine (NE) all have various receptor subtypes. The article hypothesizes that 'Stress' increases the activity/concentration of some particular subtypes of receptors (designated nt(s)) for each of the known (and unknown) neurotransmitters in the right anterior (RA) and left posterior (LP) regions (cortical and subcortical) of the brain, and has the converse effects on a different set of receptor subtypes (designated nt(h)). In contrast, 'Exercise' increases nt(h )activity/concentration and/or reduces nt(s )activity/concentration in the LA and RP areas of the brain. These effects may be initiated by the activation of Brain Derived Neurotrophic Factor (BDNF) (among others) in exercise and its suppression in stress. CONCLUSION: On the basis of this hypothesis, a better understanding of brain neurodynamics might be achieved by considering the oscillations caused by single neurotransmitters acting on their different receptor subtypes, and the temporal pattern of recruitment of these subtypes. Further, appropriately designed and planned experiments will not only corroborate such theoretical models, but also shed more light on the underlying brain dynamics

    The physiological strain index does not reliably identify individuals at risk of reaching a thermal tolerance limit

    Get PDF
    Purpose The physiological strain index (PSI) was developed to assess individuals' heat strain, yet evidence supporting its use to identify individuals at potential risk of reaching a thermal tolerance limit (TTL) is limited. The aim of this study was to assess whether PSI can identify individuals at risk of reaching a TTL. Methods Fifteen females and 21 males undertook a total of 136 trials, each consisting of two 40-60 minute periods of treadmill walking separated by ~ 15 minutes rest, wearing permeable or impermeable clothing, in a range of climatic conditions. Heart rate (HR), skin temperature (T sk), rectal temperature (T re), temperature sensation (TS) and thermal comfort (TC) were measured throughout. Various forms of the PSI-index were assessed including the original PSI, PSI fixed , adaptive-PSI (aPSI) and a version comprised of a measure of heat storage (PSI HS). Final physiological and PSI values and their rate of change (ROC) over a trial and in the last 10 minutes of a trial were compared between trials completed (C, 101 trials) and those terminated prematurely (TTL, 35 trials). Results Final PSI original , PSI fixed , aPSI, PSI HS did not differ between TTL and C (p > 0.05). However, differences between TTL and C occurred in final T sk , T re-T sk , TS, TC and ROC in PSI fixed , T re , T sk and HR (p < 0.05). Conclusion These results suggest the PSI, in the various forms, does not reliably identify individuals at imminent risk of reaching their TTL and its validity as a physiological safety index is therefore questionable. However, a physiological-perceptual strain index may provide a more valid measure
    corecore