160 research outputs found

    Tackling dysfunction of mitochondrial bioenergetics in the brain

    Get PDF
    Oxidative phosphorylation (OxPhos) is the basic function of mitochondria, although the landscape of mitochondrial functions is continuously growing to include more aspects of cellular homeostasis. Thanks to the application of -omics technologies to the study of the OxPhos system, novel features emerge from the cataloging of novel proteins as mitochondrial thus adding details to the mitochondrial proteome and defining novel metabolic cellular interrelations, especially in the human brain. We focussed on the diversity of bioenergetics demand and different aspects of mitochondrial structure, functions, and dysfunction in the brain. Definition such as ‘mitoexome’, ‘mitoproteome’ and ‘mitointeractome’ have entered the field of ‘mitochondrial medicine’. In this context, we reviewed several genetic defects that hamper the last step of aerobic metabolism, mostly involving the nervous tissue as one of the most prominent energy-dependent tissues and, as consequence, as a primary target of mitochondrial dysfunction. The dual genetic origin of the OxPhos complexes is one of the reasons for the complexity of the genotype-phenotype correlation when facing human diseases associated with mitochondrial defects. Such complexity clinically manifests with extremely heterogeneous symptoms, ranging from organ-specific to multisystemic dysfunction with different clinical courses. Finally, we briefly discuss the future directions of the multi-omics study of human brain disorders

    Multimode photonic molecules for advanced force sensing

    Get PDF
    We propose a force sensor, with optical detection, based on a reconfigurable multicavity photonic molecule distributed over two parallel photonic crystal membranes. The system spectral behaviour is described with an analytical model based on coupled mode theory and validated by finite difference time domain simulations. The deformation of the upper photonic crystal membrane, due to a localized vertical force, is monitored by the relative spectral positions of the photonic molecule resonances. The proposed system can act both as force sensor, with pico-newton sensitivity, able to identify the position where the force is applied, and as torque sensor able to measure the torsion of the membrane along two perpendicular directions

    Respiratory chain complex I, a main regulatory target of the cAMP/PKA pathway is defective in different human diseases

    Get PDF
    In mammals, complex I (NADH-ubiquinone oxidoreductase) of the mitochondrial respiratory chain has 31 supernumerary subunits in addition to the 14 conserved from prokaryotes to humans. Multiplicity of structural protein components, as well as of biogenesis factors, makes complex I a sensible pace-maker of mitochondrial respiration. The work reviewed here shows that the cAMP/PKA pathway regulates the biogenesis, assembly and catalytic activity of complex I and mitochondrial oxygen superoxide production. The structural, functional and regulatory complexity of complex I, renders it particularly vulnerable to genetic and sporadic pathological factors. Complex I dysfunction has, indeed, been found, to be associated with several human diseases. Knowledge of the pathogenetic mechanisms of these diseases can help to develop new therapeutic strategies. (C) 2011 Federation of European Biochemical Societies. Published by Elsevier B. V. All rights reserved

    Near-field investigation of luminescent hyperuniform disordered materials

    Get PDF
    Disordered photonic nanostructures have attracted tremendous interest in the past three decades, not only due to the fascinating and complex physics of light transport in random media, but also for peculiar functionalities in a wealth of interesting applications. Recently, the interest in dielectric disordered systems has received new inputs by exploiting the role of long-range correlation within scatterer configurations. Hyperuniform photonic materials, that share features of photonic crystals and random systems, constitute the archetype of systems where light transport can be tailored from diffusive transport to a regime dominated by light localization due to the presence of photonic band gap. Here, advantage is taken of the combination of the hyperuniform disordered (HuD) design in slab photonics, the use of embedded quantum dots for feeding the HuD resonances, and near-field hyperspectral imaging with sub-wavelength resolution in the optical range to explore the transition from localization to diffusive transport. It is shown, theoretically and experimentally, that photonic HuD systems support resonances ranging from strongly localized modes to extended modes. It is demonstrated that Anderson-like modes with high Q/V are created, with small footprint, intrinsically reproducible and resilient to fabrication-induced disorder, paving the way for a novel photonic platform for quantum applications

    Integrated nano-opto-electro-mechanical sensor for spectrometry and nanometrology

    Get PDF
    Spectrometry is widely used for the characterization of materials, tissues, and gases, and the need for size and cost scaling is driving the development of mini and microspectrometers. While nanophotonic devices provide narrowband filtering that can be used for spectrometry, their practical application has been hampered by the difficulty of integrating tuning and read-out structures. Here, a nano-opto-electro-mechanical system is presented where the three functionalities of transduction, actuation, and detection are integrated, resulting in a high-resolution spectrometer with a micrometer-scale footprint. The system consists of an electromechanically tunable double-membrane photonic crystal cavity with an integrated quantum dot photodiode. Using this structure, we demonstrate a resonance modulation spectroscopy technique that provides subpicometer wavelength resolution. We show its application in the measurement of narrow gas absorption lines and in the interrogation of fiber Bragg gratings. We also explore its operation as displacement-to-photocurrent transducer, demonstrating optomechanical displacement sensing with integrated photocurrent read-out

    Waveguide-coupled Electrically-tunable Cavity-Emitter System

    Get PDF
    In scalable quantum photonic integrated circuits it is imperative to spectrally tune both cavities and emitters independently, in order to overcome their intrinsic energy mismatch and generate indistinguishable single-photons on a chip. Here we present the first fully-controllable cavity-emitter system in the solid state and discuss its coupling to ridge waveguides

    Experimental Quantum Hamiltonian Learning

    Get PDF
    Efficiently characterising quantum systems, verifying operations of quantum devices and validating underpinning physical models, are central challenges for the development of quantum technologies and for our continued understanding of foundational physics. Machine-learning enhanced by quantum simulators has been proposed as a route to improve the computational cost of performing these studies. Here we interface two different quantum systems through a classical channel - a silicon-photonics quantum simulator and an electron spin in a diamond nitrogen-vacancy centre - and use the former to learn the latter's Hamiltonian via Bayesian inference. We learn the salient Hamiltonian parameter with an uncertainty of approximately 10−510^{-5}. Furthermore, an observed saturation in the learning algorithm suggests deficiencies in the underlying Hamiltonian model, which we exploit to further improve the model itself. We go on to implement an interactive version of the protocol and experimentally show its ability to characterise the operation of the quantum photonic device. This work demonstrates powerful new quantum-enhanced techniques for investigating foundational physical models and characterising quantum technologies

    Effects of Rising Temperature on the Growth, Stoichiometry, and Palatability of Aquatic Plants

    Get PDF
    Global warming is expected to strengthen herbivore-plant interactions leading to enhanced top-down control of plants. However, latitudinal gradients in plant quality as food for herbivores suggest lower palatability at higher temperatures, but the underlying mechanisms are still unclear. If plant palatability would decline with temperature rise, then this may question the expectation that warming leads to enhanced top-down control. Therefore, experiments that directly test plant palatability and the traits underlying palatability along a temperature gradient are needed. Here we experimentally tested the impact of temperature on aquatic plant growth, plant chemical traits (including stoichiometry) and plant palatability. We cultured three aquatic plant species at three temperatures (15, 20, and 25°C), measured growth parameters, determined chemical traits and performed feeding trial assays using the generalist consumer Lymnaea stagnalis (pond snail). We found that rising temperature significantly increased the growth of all three aquatic plants. Plant nitrogen (N) and phosphorus (P) content significantly decreased, and carbon (C):N and C:P stoichiometry increased as temperature increased, for both Potamogeton lucens and Vallisneria spiralis, but not for Elodea nuttallii. By performing the palatability test, we found that rising temperatures significantly decreased plant palatability in P. lucens, which could be explained by changes in the underlying chemical plant traits. In contrast, the palatability of E. nuttallii and V. spiralis was not affected by temperature. Overall, P. lucens and V. spiralis were always more palatable than E. nuttallii. We conclude that warming generally stimulates aquatic plant growth, whereas the effects on chemical plant traits and plant palatability are species-specific. These results suggest that the outcome of the impact of temperature rise on macrophyte stoichiometry and palatability from single-species studies may not be broadly applicable. In contrast, the plant species tested consistently differed in palatability, regardless of temperature, suggesting that palatability may be more strongly linked to species identity than to intraspecific variation in plant stoichiometry
    • …
    corecore