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A B S T R A C T   

Illicit-drug production, trafficking and seizures are on an all-time high. This consequently raises pressure on 
investigative authorities to provide rapid forensic results to assist law enforcement and legal processes in drug- 
related cases. Ideally, every police officer is equipped with a detector to reliably perform drug testing directly at 
the incident scene. Such a detector should preferably be small, portable, inexpensive and shock-resistant but 
should also provide sufficient selectivity to prevent erroneous identifications. This study explores the concept of 
on-site drugs-of-abuse detection using a 1.8 × 2.2 mm2 multipixel near-infrared (NIR) spectral sensor that 
potentially can be integrated into a smartphone. This integrated sensor, based on an InGaAs-on-silicon tech-
nology, exploits an array of resonant-cavity enhanced photodetectors without any moving parts. A 100% correct 
classification of 11 common illicit drugs, pharmaceuticals and adulterants was achieved by chemometric 
modelling of the response of 15 wavelength-specific pixels. The performance on actual forensic casework was 
investigated on 246 cocaine-suspected powders and 39 MDMA-suspected ecstasy tablets yielding an over 90% 
correct classification in both cases. These findings show that presumptive drug testing by miniaturized spectral 
sensors is a promising development ultimately paving the way for a fully integrated drug-sensor in mobile 
communication devices used by law enforcement.   

1. Introduction 

Drug abuse and drug production are on a rise reaching an estimated 
269 million drug users globally in 2018, a 30% increase compared to the 
2009 figures. In addition, the estimated global manufacture of cocaine 
also reached an all-time high of 1723 metric tons in 2020 [1,2]. 
Consequently, a rising trend in seizures of cocaine, methamphetamine, 
MDMA and opioids is reported by the United Nations Office on Drugs 
and Crime (UNODC) [1]. This sets pressure on both police and border 
security officers that are confronted with an increased workload. To 
effectively steer the forensic process, information on the identity of 
encountered suspected materials is needed rapidly and ideally directly 
on-site. For many years, investigation officers use chemical spot tests for 
presumptive drug testing. In these so-called colorimetric tests, a color 

can be observed after reaction with a specific drug, such as a blue color 
for the cobalt(II)thiocyanate complex with cocaine in the Scott test. 
Unfortunately, color tests are only available for a small range of drugs, 
are prone to false positive reactions, require manual handling of the 
suspect material and require single-use consumables and chemicals thus 
impacting the environment [3]. Gas chromatography – mass spectrom-
etry (GC-MS) currently is the default technique for unambiguous iden-
tification of common drugs-of-abuse in forensic samples [4,5]. However, 
this reliable technique is expensive, requires experienced operators, is 
not mobile due to the required stable vacuum systems and is thus 
intended for use in dedicated laboratory facilities rather than on-site 
testing. 

In recent years, various portable platforms for on-site forensic drug 
detection have been developed and evaluated. Handheld Raman devices 
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are capable of detecting a wide range of substances -both pure and 
mixtures-while being non-destructive and able to scan directly through 
packaging materials [6–9]. Forensic applications of on-site drug testing 
using portable Raman devices are reported for cocaine [10–13], cath-
inones [13,14] and ‘legal high’ substances [15]. A drawback of Raman 
devices is their relatively high unit price, thus limiting their scope only 
to dedicated forensic teams and illicit drug law enforcement experts. 
Portable mid-infrared (MIR) instruments are another promising cate-
gory for on-site forensic drug detection due to the higher spectral 
specificity in the MIR wavelength range compared to near-IR (NIR) [16, 
17]. Recent forensic applications in MIR drug detection using portable 
devices include fentanyl detection in community drug testing [18] and 
cocaine detection [19]. Further miniaturization of MIR instruments by 
micro-electro-mechanical systems (MEMS) technology is a promising 
development towards pocket-size instrumentation [20,21]. However, 
the attenuated total reflection (ATR) sampling technique needed for MIR 
requires the compression of a small amount of sample on the ATR 
crystal. Touching and sampling of the material by the operators is thus 
required [17,21]. Electrochemical sensors can also detect a broad range 
of substances and do not face the limitations of spectroscopic techniques 
such as interferences for colored samples. They do however require 
single-use electrodes for analysis [22–24]. 

NIR-based spectrometers are very promising for fast and reliable on- 
scene drug detection. Coppey et al. introduced a drug-detection platform 
using a handheld NIR sensor operating in the 950–1650 nm range and 
demonstrated applicability for qualitative and quantitative cocaine and 
heroin analysis [25] as well as the measurement of the THC level in 
cannabis [26]. Risolutti et al. used the same MicroNIR hardware in a 
toxicological analytical platform for cocaine detection in saliva [27]. 
Hespanhol et al. demonstrated in-situ cocaine profiling based on NIR 
spectra of a 900–1700 nm NanoNIR spectrometer [28]. The Dutch Police 
very recently collaborated in a study on illicit-drug identification using a 
1300–2600 nm portable NIR spectrometer by applying a 
calibration-friendly data-analysis approach for mixture detection [29]. 

Numerous attempts were undertaken to miniaturize sensors for on- 
scene forensic detection [6], such as paper based analytical devices 
[30] and wearable electrochemical sensors including fingertip sensors, 
rings and gloves (‘robotic skin’) [22,31–33]. The availability of conve-
nient small-size, broadly applicable and affordable sensors may leverage 
street level drug testing by generic police officers. Since all police and 
investigative staff are equipped with a smartphone, integration of a 
spectroscopic sensor in the mobile phone may also aid rapid drug 
detection. However, this requires extensive miniaturization of a rela-
tively low-cost sensor. The integration of a spectral sensor in a mobile 
communication platform with cloud data storage allows for a local 
measurement with central data storage, processing and modelling. This 
creates opportunities to develop rapid, miniaturized portable technol-
ogy that combines ease-of-use with excellent selectivity, sensitivity and 
versatility. Various groups have presented the development of visible or 
short wave (SW)-NIR spectral sensors aimed for smartphone integration. 
Rissanen et al. demonstrated a hyperspectral imager operating in the 
450–550 nm range [34]. This device uses a MEMS Fabry-Pérot inter-
ferometer. Levin et al. reported on a ~600–800 nm silicon hyperspectral 
Fabry-Pérot filter [35]. In 2020, a collaboration of Dutch governmental 
laboratories reported SW-NIR-based cocaine detection in seized case-
work using a 740–1050 nm sensor in combination with an advanced 
multi-stage machine learning model [36]. However, such sensors which 
use silicon-based detectors have a maximum operating wavelength of 
1050 nm [37,38]. Spectral peaks in the SW-NIR (~700–1050 nm) pri-
marily originate from the 3rd to 4th overtones of C–H, O–H and N–H 
groups, which have a collapsed band structure and contain limited in-
formation [38]. In comparison, spectral sensors operating in the NIR 
(800–2500 nm) region are more reliable and provide higher selectivity, 
sensitivity and penetration depth [38]. 

The common strategy to extend the NIR wavelength range up to 
~1700 nm is by using Indium Gallium Arsenide (InGaAs) detectors. 

Existing portable NIR sensor systems are mostly based on miniaturized 
dispersive optics typically using scaled-down diffraction gratings [37, 
39,40] and Fabry-Pérot filter-based [41–43] or Fourier transform-based 
[44,45] systems with mirror displacement using MEMS. In all these 
cases, the filter and detector components of the sensor are not integrated 
into one structure, thus resulting in high complexity and limiting the 
extent of miniaturization. Moreover, MEMS approaches are susceptible 
to mechanical vibrations and shocks common in on-site sensing 
scenarios. 

Very recently, a novel fully integrated multi-pixel NIR sensor was 
introduced [46,47], which uses an array of 16 resonant cavity-enhanced 
photodetectors operating in the 850–1700 nm range. This 1.8 × 2.2 mm2 

footprint sensor contains no moving parts and can therefore be produced 
in large volumes at low-cost due to the wafer-scale fabrication process 
[47]. In this work, an exciting first application of this multi-pixel NIR 
sensor is presented for the identification of drugs of abuse. As a 
proof-of-principle, the classification of eleven substances commonly 
encountered in police seizures is presented showing a compelling 100% 
accuracy. In addition, real-world performance was assessed by analysis 
of 246 cocaine-suspected forensic casework samples and 71 
MDMA-suspected crushed ecstasy tablets, seized by the Amsterdam 
Police in 2020 and 2021. 

2. Materials and methods 

2.1. Forensic casework material 

Three sets of forensic casework material were used in this study: 
Set A: The purpose of this set is to investigate sensor selectivity for 

various commonly encountered drugs-of-abuse substances as well as 
several licit pharmaceuticals that frequently occur in forensic casework. 
All samples originated from high-purity casework samples seized by the 
Dutch Police. Substances included in this set are: amphetamine sulphate, 
cocaine base, cocaine HCl, caffeine, brown heroin sample containing 
heroin base, ketamine, levamisole, lidocaine, 3,4-methylenedioxyme-
thamphetamine HCl (MDMA), methamphetamine HCl and paracetamol. 

Set B: The aim of this set is to explore the sensor performance for 
cocaine detection in a wide variety of 246 white, off-white or cream- 
colored powders seized in a drug-suspected setting. The composition 
of this set is as follows: 155x cocaine (either in HCl or base form, at 
various concentrations and degrees of adulteration); 18x amphetamine; 
18x ketamine; 13x MDMA; and 42 other substances (uncommon illicit 
drugs, designer drugs and licit pharmaceuticals or household chem-
icals). The exact composition of the samples is published elsewhere: 
Table S6 in Ref. [29] and Table S2 in Ref. [36], completed with 13 
casework cocaine HCl samples from large volume seizures. 

Set C: This set is focusing on the sensor suitability to detect MDMA in 
colored powders originating from crushed ecstasy tablets. The set con-
sisted of 71 seized tablets crushed to powder. A total of 39 tablets con-
tained MDMA. The 32 remaining tablets contained a variety of other 
synthetic drugs such as 4-bromo-2,5-dimethoxyphenethylamine (2C–B), 
2-bromo-4,5-dimethoxyphenethylamine (2Br45DMPEA), 4-methyl-
methcathinone (4-MMC), 4-fluoroamphetamine (4-FA), fluo-
romethamphetamine (FMA) isomers and pentylone. Full details, 
pictures and tablet weights are reported elsewhere [23]. 

2.2. Instrument and settings 

Scans were recorded on an integrated semiconductor spectral sensor 
based on a multi-pixel array of resonant-cavity-enhanced photodetec-
tors. Each of the 16 pixels includes a Fabry-Pérot optical cavity with 
different cavity lengths generating a wavelength-selective response 
within the 850–1700 nm range [47]. The photodetector array was 
fabricated on an InGaAs/InP membrane bonded on a silicon wafer, using 
the fabrication method described by Van Klinken et al. [48] and Hakkel 
et al. [49], resulting in photoresponse peaks with a linewidth varying 
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from 25 nm to 90 nm; its total size was 1.8 × 2.2 mm2. For this study, the 
sensor chip combined with a halogen lamp light source, read-out elec-
tronics and USB-adapter were embedded in a reflectance 8 × 8 cm2 

casing, forming the “SpectraPod™” sensing module (Fig. 1). The module 
was operated via an in-house developed application created in MATLAB 
version 9.7 (R2019b) and executed via MATLAB Runtime for R2019b. 
This application provided instrument control settings (lamp power, 
integration time), acquisition settings (number of scan averages, 
recording of a dark reference spectrum) and the option to save and 
export raw spectral data. 

For each measurement, the average of three acquisition cycles were 
obtained, resulting in 16 photocurrent values via the analog-to-digital 
converter (ADC). The integration time per pixel was ~0.5 s. One of 
the 16 channels was damaged due to faults during manual device as-
sembly, as the sensor module used in this study was one of the first 
made. The assembly process is undergoing improvements to minimize 
risks of damage and faulty devices will be rejected during future pro-
duction. The damaged pixel was excluded in this study, and the 
remaining 15 photocurrent values were used in subsequent analyses. 
Since each pixel has a broad spectral response of multiple peaks in the 
NIR range [48], the entire range was still covered even though a single 
pixel was not working. 

Individual samples were measured by placing a glass vial containing 
sample material directly on top of the sensor window. Each vial was 
measured 9-fold, by removing and subsequently replacing vials to the 
scanner for a set of three measurements to compensate for variations 
introduced by sample placement. Then this set of three was repeated 
three times after shaking the vials to redistribute the particles. For the 
set A samples, the 9-fold replicate measurement was repeated on 6 
different days, leading to 594 scans in total. Individual measurements 
and data storage took ~20 s. Dark scans were recorded each day prior to 
analysis. Spectralon references were recorded before, after and every 2 h 
of analysis. 

2.3. Data analysis 

Firstly, the measurements of each sample were corrected for the dark 
current by subtraction of the dark current ADC value. Then, the dark- 
corrected sample measurements were converted to absorbance using 
reference measurements of the Spectralon: log 10(Ir /Is), where Ir and Is 
represent the dark-corrected ADC values for the reference and drug 
samples, respectively. Outliers were identified by plotting the Q re-
siduals and Hotelling’s T2 of the samples’ absorbance. Four out of 594 
scans in set A, 10 out of 2214 scans in set B and three out of 640 scans 

from set C, were identified as outliers and excluded. Subsequently, the 
absorbance values of the triplicate measurements taken after shaking 
the vial to redistribute the sample particles were averaged (i.e. each vial 
was measured 9-fold, and resulted in three sets of triplicate-averaged 
absorbance values). 

Data was divided into training and test sets in the following way: Set 
A: all measurements from day 1, 2 and 4 were included in the training 
set, whereas those from day 3, 5 and 6 were included in the test set. Set 
B: A total of 53 out of the 246 samples were selected for the test set, such 
that this group consisted of 30x cocaine, 6x ketamine, 6x amphetamine, 
6x MDMA and 5 samples identified as ‘others’. All remaining 193 sam-
ples were included in the training set. Set C: From the total of 71 crushed 
tablets, 19 (11 MDMA-containing, 8 with other identity) were included 
in the test set. The remaining 52 samples (28x MDMA, 24x other) 
completed the training set. The test samples of sets B and C were 
manually selected in a randomized way before the measurement pro-
cess, followed by an examination to ensure that ‘unique’ samples were 
placed in the training set. The second examination step was necessary as 
there were unique samples in the ‘others group’, e.g. there was only one 
methylenedioxypyrovalerone sample in the others group of set B and 
one pentylone sample in that of set C. An overview of all training and 
test sample sets can be found in Table S1 in the Supplemental Infor-
mation. The training data of set B were balanced by up-sampling the 
classes with fewer samples, to reduce skewing the classification model 
toward the majority class (63% of set B samples are cocaine). 

For the measurements in each set, three preprocessing methods were 
applied to the triplicate-averaged absorbance values, and compared: 
mean-centering, sum normalization and standard normal variate (SNV). 
Six classifiers were compared for building the classification model: 
linear discriminant analysis (LDA), partial least square – discriminant 
analysis (PLS-DA), support vector machine (SVM), principal component 
analysis (PCA)-LDA, random forest (RF) and PLS-RF. Fivefold groupwise 
cross-validation was used to optimize the parameters of the PLS, PCA 
and RF-based models, and groupwise randomized search cross- 
validation was used to optimize the SVM models that had a larger 
number of parameters to tune. In all cases of cross-validation, replicate 
measurements from each sample were kept together in one group. The 
combination of the preprocessing method and classifier that resulted in 
the best prediction performance for each experiment set is shown in this 
manuscript. The algorithms used in analysis and modeling were imple-
mented in Python using packages from NumPy [50], Matplotlib [51], 
and Scikit-learn [52]. 

Fig. 1. (A) Photograph of the spectral sensor placed 
on a Eurocent coin for size comparison. (B) Schematic 
diagram of the resonant-cavity-enhanced (RCE) mul-
tipixel detector array, where each pixel has a different 
wavelength response (indicated by the different 
colors). (C) The handheld SpectraPod™ sensing 
module used to acquire reflectance measurements 
through the bottom of glass sample vials. (For inter-
pretation of the references to color in this figure 
legend, the reader is referred to the Web version of 
this article.)   
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3. Results and discussion 

3.1. Common drugs-of-abuse 

Fig. 2 shows the Set A data from 15 pixels, both as raw (A) and 
following preprocessing by sum normalization (B). The preprocessed 
data already shows that the relative pixel responses are different for 
individual drug types. For example, amphetamine has a relatively high 
response on pixel #2 compared to other drugs. Direct input of the pre-
processed data into the LDA classifier from Scikit-learn provided 100% 
accurate discrimination for all drug substances by yielding both a perfect 
cross-validation in the training set and a 100% correct prediction of the 
samples in the test set (Fig. 3). It must however be noted that only single 
samples per substance were used, and inter-sample variation was thus 
not taken into account in this experiment. The results nevertheless 
demonstrate the capability of the sensor to discriminate among rela-
tively pure drug substances, even when measured on different days. The 
sensor selectivity is also reflected in the LDA score plots showing well- 
separated distributions for each individual compound (Fig. 4). 

3.2. White and off-white powdered forensic casework samples 

The sensor performance was subsequently examined using the 246 
casework samples included in Set B. This set was designed to be repre-
sentative for actual forensic materials, as these sample were randomly 
selected from seized casework of the Amsterdam Police laboratory by 
only taking into account the physical properties of the material (i.e. 
material with a white, off-white or cream color and an appearance as 
powder, coarse powder or small chunks). The actual composition of the 
material, revealed by GC-MS, showed that the vast majority (i.e. 63%) of 
the material was cocaine-containing (in different compositions with 
various amount of adulterants). Around 20% of the material consisted of 
the common drugs amphetamine, MDMA and ketamine. The remaining 
17% (42 samples) of the ‘others group’ represented a very diverse range 
of substances such as adulterants, designer drugs and household chem-
icals. Many of them were unique in this sample set. These diverse ‘other’ 
substances complicated chemometric modelling by the large diversity of 
spectral signals within this group. Figure S1 shows the confusion 
matrices for the Set B samples when grouping the material in 4 drug 
categories (i.e. cocaine, amphetamine, ketamine and MDMA) and 1 
generic ‘other’ category containing the diverse set of remaining sub-
stances. A 69% accuracy from cross-validation was obtained, in which 
the main errors could be attributed to misclassifications of the ‘other’ 
class. This broad class of samples was particularly challenging, showing 
a 34% false positive rate for cocaine in cross-validation (Figure S1). The 

wide range of diverse substances including the pure form of adulterants 
that were also present as part of diluted cocaine-containing samples is 
proposed to cause this phenomenon. The overall 82% validation pre-
diction accuracy does however show that the model is well capable of 
characterizing new samples of illicit-drugs for classes that are included 
in model design. This is further exemplified by the results shown in 
Fig. 5, which were obtained using SNV preprocessing and the SVM 
classifier (optimized using a groupwise randomized search cross- 
validation with 50 iterations, to obtain the model parameters: linear 
kernel, tol = 1, C = 10). In this analysis, all samples belonging to the 
‘others’ class were deliberately excluded to provide insight in the sensor 
performance to discriminate common drugs originating from various 
sources (seizures, degree of adulteration). In addition to the single 
sample results in 3.1, the 93% prediction accuracy showed that the 
sensor was also capable to detect e.g. cocaine within this wide variety of 
casework materials thus including inter-sample variations such as par-
ticle size, color and the presence of adulterants. It must however be 
noted that omitting the wide variety of diverse substances in the ‘other’ 
class makes this experiment less representative for real-world perfor-
mance on forensic samples in which many diverse chemicals may be 
encountered. These Fig. 5 results are thus only intended to provide 
insight in performance on various batches of cocaine, amphetamine, 
MDMA and ketamine. The model on the full Set B (Figure S1) needs 
further study to draw more statistically convincing conclusions on the 
overall performance in a forensic setting. 

Another approach to cope with the diverse range of substances 
encountered in the forensic setting is to only put emphasis on the most 
important substance; thus, develop a model for cocaine-detection only. 
All Set B samples were divided into a cocaine-containing class (155 
samples) and a ‘non-cocaine’ class (91 samples). A model was imple-
mented with SNV preprocessed data as input for the PLS-RF classifica-
tion method optimized using groupwise fivefold cross-validation. 10 
latent variables were retained from the PLS analysis, which were used as 
input to the RF classifier with 200 estimators and a maximum depth of 
100 levels. The prediction of the test dataset obtained 92% accuracy; 
84% sensitivity (true positive rate); 98% specificity (true negative rate) 
and 97% precision as depicted in Figure S2. With the low false negative 
rate, such a test could be envisioned in e.g. harbor bulk-testing for 
cocaine using the smartphone of harbor security personnel. The rela-
tively high false positive rate for cocaine may be acceptable in this 
specific situation as a positive first suspicion on cocaine will always be 
followed by additional tests using more advanced laboratory-grade 
equipment. 

Note that, for all experiments in this section, both cocaine HCl (i.e. 
snorting cocaine) and cocaine base (i.e. crack cocaine) were combined 

Fig. 2. Raw (A) and sum normalized (B) sensor data of the Set A common drugs of abuse.  
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into a single group. The reason is that background knowledge on the salt 
form of a substance is typically not available from routine GC-MS 
casework data. In spectroscopic analysis, it is common that various 
salt forms yield different spectra and should thus be considered different 

substances [10,36,53]. This is also noticed in the Set A results of this 
study (3.1) in which the different cocaine types yielded distinct re-
sponses. Including separate groups for cocaine HCl and cocaine base in 
the training set may thus be a future development to increase model 

Fig. 3. Confusion matrices of the Set A data following sum normalization and LDA classification. Numbers are absolute frequency (samples with outliers removed).  

Fig. 4. Linear Discriminant Analysis (LDA) scores of the Set A training set following sum normalization of the raw signal. Explained variance: LDA1, 69.5%; LDA2, 
14.5%; LDA3, 8.9%. 
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performance. It should also be remarked that supervised methods (i.e. 
LDA, PLS-RF, SVM) were required to exploit the differences in the 
spectroscopic profiles in all sets. The unsupervised approach PCA (re-
sults not shown) and PCA-based soft independent modelling by class 
analogy (SIMCA) were found unsuitable as differences were not sub-
stantial enough in relation to compound classes showing significant 
profile variation due to compositional variety. As a first proof of prin-
ciple, nine replicate scans each followed by shaking of the material were 
taken into account. In forensic casework analysis it is highly unwanted 
to perform a large number of physical replicates because of time con-
straints. As a next step towards real-life performance, a follow-up study 
on single measurements or replicate scans without removing and 
shaking the sample is suggested. 

3.3. MDMA-detection in ecstasy tablets 

Another promising application for rapid on-site drug testing using a 
mobile phone integrated NIR-sensor is the detection of MDMA- 
containing tablets by police officers at e.g. dance parties. Ecstasy tab-
lets are usually brightly colored due to the presence of colorants. In 
addition, an active ingredient and one or more excipients may be pre-
sent. MDMA is the most commonly encountered substance in these 
tablets and is put under international control as an illicit substance. 
Besides MDMA, other synthetic drugs (both controlled and uncon-
trolled) including 2C–B, fluoroamphetamines or fluoromethamphet-
amines may also be encountered. In certain cases, such as a scam, no 
active ingredient may be present at all. Although mixtures of multiple 

drugs do exist [53–55], these are rarely encountered in tablets and are 
left outside the scope of this study. A total of 71 crushed tablets (39x 
MDMA-containing, 32x others) were scanned on the NIR sensor. A 
model for MDMA detection was developed utilizing the PLS-RF method 
(using 8 PLS latent variables and a RF classifier with 50 estimators and a 
maximum depth of 10 levels). The classification model achieved a 
cross-validation accuracy of 91%. In the prediction of the test sample 
set, a 91% accuracy; 94% sensitivity (true positive rate) and 88% 
specificity (true negative rate) were obtained. The confusion matrices 
are shown in Fig. 6. These results demonstrate the potential of such a 
sensor for on-scene MDMA detection. In line with section 3.2, the 
non-MDMA-containing tablets also consisted of a wide variety of at least 
11 different substances [23]. Unlike the results for cocaine, a relatively 
low number of false positive and false negative results were observed. A 
possible explanation for this is a more selective (i.e. characteristic, 
diagnostic) NIR response of MDMA compared to other synthetic drugs in 
the wavelength range of this sensor [29]. Crushed tablets were used in 
this study because of availability of this sample set. It must be noted that 
crushing of tablets requires some manual sample handling that ideally 
should be avoided. Direct analysis of intact tablets was not included in 
the current study but may be a promising future outlook. 

4. Conclusions 

As a proof of concept, the performance of a miniaturized multipixel 
integrated spectral sensor for forensic illicit-drug detection was exam-
ined. The sensor consisted of 15 pixels all with individual spectral 

Fig. 5. Confusion matrices of the training set (left, relative numbers) and training set (right, absolute numbers) of the 204 samples in Set B (excluding the ‘others’ 
class). Model performance following SNV pre-processing and SVM classification. 

Fig. 6. Confusion matrices of the training set (left, relative numbers) and training set (right, both absolute and relative numbers) of the Set C crushed ecstasy tablets 
processed as an MDMA-detection test. Results following mean centering as pre-processing and PLS-RF classification. 
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characteristics within the 850–1700 nm range. The spectral information 
was therefore encompassed in only 15 measured photocurrent values. 
This limited resolution was however adequate to distinguish cocaine, 
MDMA, amphetamine, methamphetamine and ketamine from each 
other and from various licit drug substances. An LDA-based model 
provided 100% accuracy both in the cross-validation of the training set 
and in the classification of a validation set. Real-world forensic casework 
materials not only include a vast number of different substances but also 
major dissimilarities are observed within a single type of drug. This 
relates to differences in degree and composition of adulteration, the 
chemical form of the active ingredient and to physical properties as 
particle size, shape and color. The performance of the sensor on actual 
forensic casework was further explored on 246 seized powder samples. 
Using SVM and PLS-RF classifiers, an above 90% accurate prediction of 
cocaine was achieved by focusing on differentiation to other drugs. This 
demonstrates that the sensor is capable of handling the chemical di-
versity encountered in cocaine casework samples, although supervised 
models are required to exploit the spectral profile. Only 69% accuracy 
from cross-validation was obtained when all randomly selected case-
work samples were included in modelling. This is related to a high 34% 
false positive rate for cocaine originating from a broad residual class of 
samples representing a large diversity of uncommonly encountered 
substances (e.g. pharmaceuticals, household chemicals, designer drugs). 
A possible future development to overcome this limitation is expansion 
of the training set to include all substances that are likely to be 
encountered in a forensic setting. When spectral selectivity is then still 
found to be the limiting factor, technological advances such as an in-
crease in the number of pixels or improvements in the pixel’s NIR 
wavelength range and linewidth are possible solutions. 

Unlike cocaine, detection of crushed MDMA-suspected ecstasy tab-
lets yielded a remarkably good 94% true positive and 88% true negative 
rate. Possible explanations are the relatively high level of MDMA in 
seized ecstasy tablets in combination with more diagnostic spectral 
features for this substance in the NIR spectrum as reflected in the pixel 
responses. 

Several encumbrances need to be addressed in future studies towards 
implementation of this technology in forensic practice. The current 
study is limited to scans on powdered samples collected in glass vials 
whereas actual forensic casework can have a myriad of physical ap-
pearances and packaging materials. Also, the current replicate scans per 
sample are unwanted in a time-efficient on-scene approach. Further-
more, future mechanical shock testing will be valuable to provide 
additional insight on the sensor’s robustness and allow comparison with 
international standards. 

Summarized, these findings show that illicit-drug detection in real 
forensic case work samples using a 1.8 × 2.2 mm2 miniaturized multi-
pixel spectral sensor is possible. The option of integrating such devices in 
a smartphone provides interesting opportunities for drug detection by 
police and customs officers directly on-site. 
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[20] S. Nicoletti, J.-M. Fédéli, M. Fournier, P. Labeye, P. Barritault, A. Marchant, 
A. Glière, A. Teulle, J.-G. Coutard, L. Duraffourg, Miniaturization of mid-IR sensors 
on Si: challenges and perspectives, in: Silicon Photonics XIV, SPIE, 2019, 
pp. 37–46, https://doi.org/10.1117/12.2506759. 

[21] A.O. Ghoname, Y.M. Sabry, M. Anwar, D. Khalil, Attenuated total reflection (ATR) 
MEMS FTIR spectrometer, in: MOEMS and Miniaturized Systems XIX, SPIE, 2020, 
pp. 170–175, https://doi.org/10.1117/12.2546012. 

[22] M. de Jong, N. Sleegers, J. Kim, F.V. Durme, N. Samyn, J. Wang, K.D. Wael, 
Electrochemical fingerprint of street samples for fast on-site screening of cocaine in 
seized drug powders, Chem. Sci. 7 (2016) 2364–2370, https://doi.org/10.1039/ 
C5SC04309C. 

[23] R. Van Echelpoel, R. Kranenburg, A. van Asten, K. De Wael, Electrochemical 
detection of MDMA and 2C-B in ecstasy tablets using a selectivity enhancement 
strategy by in-situ derivatization, Forensic Chem (2021) 100383, https://doi.org/ 
10.1016/j.forc.2021.100383. 

[24] M. Parrilla, A. Slosse, R. Van Echelpoel, N. Felipe Montiel, A.R. Langley, F. Van 
Durme, K. De Wael, Rapid on-site detection of illicit drugs in smuggled samples 
with a portable electrochemical device, Chemosensors 10 (2022) 108, https://doi. 
org/10.3390/chemosensors10030108. 
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