12 research outputs found

    High Chern number van der Waals magnetic topological multilayers MnBi2_2Te4_4/hBN

    Full text link
    Chern insulators are two-dimensional magnetic topological materials that conduct electricity along their edges via the one-dimensional chiral modes. The number of these modes is a topological invariant called the first Chern number CC, that defines the quantized Hall conductance as Sxy=Ce2/hS_{xy}= C e^2/h. Increasing CC is pivotal for the realization of low-power-consumption topological electronics, but there has been no clear-cut solution of this problem so far, with the majority of existing Chern insulators showing C=1C=1. Here, by using state-of-the-art theoretical methods, we propose an efficient approach for the realization of the high-CC Chern insulator state in MnBi2_2Te4_4/hBN van der Waals multilayer heterostructures. We show that a stack of nn MnBi2_2Te4_4 films with C=1C=1 intercalated by hBN monolayers gives rise to a high Chern number state with C=nC=n, characterized by nn chiral edge modes. This state can be achieved both under the external magnetic field and without it, both cases leading to the quantized Hall conductance Sxy=Ce2/hS_{xy}= C e^2/h. Our results therefore pave way to practical high-CC quantized Hall systems.Comment: 10 pages, 5 figure

    Superlattices of Gadolinium and Bismuth Based Thallium Dichalcogenides as Potential Magnetic Topological Insulators

    Get PDF
    Using relativistic spin-polarized density functional theory calculations we investigate magnetism, electronic structure and topology of the ternary thallium gadolinium dichalcogenides TlGdZ2 (Z= Se and Te) as well as superlattices on their basis. We find TlGdZ2 to have an antiferromagnetic exchange coupling both within and between the Gd layers, which leads to frustration and a complex magnetic structure. The electronic structure calculations reveal both TlGdSe2 and TlGdTe2 to be topologically trivial semiconductors. However, as we show further, a three-dimensional (3D) magnetic topological insulator (TI) state can potentially be achieved by constructing superlattices of the TlGdZ2/(TlBiZ2)n type, in which structural units of TlGdZ2 are alternated with those of the isomorphic TlBiZ2 compounds, known to be non-magnetic 3D TIs. Our results suggest a new approach for achieving 3D magnetic TI phases in such superlattices which is applicable to a large family of thallium rare-earth dichalcogenides and is expected to yield a fertile and tunable playground for exotic topological physics.M.M.O. and M.B. acknowledge the support by Spanish Ministerio de Ciencia e Innovación (Grant No. PID2019-103910GB-I00) and the University of the Basque Country (Grant no. IT1527-22). A.Yu.V. and E.K.P. acknowledge support from the Ministry of Education and Science of the Russian Federation within State Task No. FSWM-2020-0033 (in the part of bulk and surface electronic structure calculations). E.V.C. acknowledges support from Saint Petersburg State University (Grant ID No. 90383050). Yu.M.K. acknowledges support from the Government research assignment for ISPMS SB RAS, project FWRW-2022-0001 (in the part of the topological classification of bulk band structure)

    MnBi2Se4-Based Magnetic Modulated Heterostructures

    No full text
    Thin films of magnetic topological insulators (TIs) are expected to exhibit a quantized anomalous Hall effect when the magnetizations on the top and bottom surfaces are parallel and a quantized topological magnetoelectric effect when the magnetizations have opposite orientations. Progress in the observation of these quantum effects was achieved earlier in the films with modulated magnetic doping. On the other hand, the molecular-beam-epitaxy technique allowing the growth of stoichiometric magnetic van der Waals blocks in combination with blocks of topological insulator was developed. This approach should allow the construction of modulated heterostructures with the desired architecture. In the present paper, based on the first-principles calculations, we study the electronic structure of symmetric thin film heterostructures composed of magnetic MnBi2Se4 blocks (septuple layers, SLs) and blocks of Bi2Se3 TI (quintuple layers, QLs) in dependence on the depth of the magnetic SLs relative to the film surface and the TI spacer between them. Among considered heterostructures we have revealed those characterized by nontrivial band topology

    High Chern number van der Waals magnetic topological multilayers MnBi2Te4/hBN

    No full text
    Chern insulators are two-dimensional magnetic topological materials that conduct electricity along their edges via the one-dimensional chiral modes. The number of these modes is a topological invariant called the first Chern number C that defines the quantized Hall conductance as Sxy = Ce2/h. Increasing C is pivotal for the realization of low-power-consumption topological electronics, but there has been no clear-cut solution to this problem so far, with the majority of existing Chern insulators showing C = 1. Here, by using state-of-the-art theoretical methods, we propose an efficient approach for the realization of the high-C state in MnBi2Te4/hBN van der Waals multilayer heterostructures. We show that a stack of n MnBi2Te4 films with C = 1 intercalated by hBN monolayers gives rise to a high Chern number state with C = n, characterized by n chiral edge modes. This state can be achieved both under the external magnetic field and without it, both cases leading to the quantized Hall conductance Sxy = Ce2/h. Our results, therefore, pave the way to practical high-C quantized Hall systems.The authors thank J. Ibañez-Azpiroz, S.S. Tsirkin, I. Souza, and M. Garnica for stimulating discussions. M.B. and M.M.O. acknowledge the support of the Spanish Ministerio de Ciencia e Innovacion (Grant no. PID2019-103910GB-I00) and the University of the Basque Country (Grant no. IT1527-22). A.Y.V. and E.K.P. acknowledge the Ministry of Science and Higher Education of the Russian Federation (state task № FSWM-2020-0033). E.V.C. acknowledges support from Saint Petersburg State University (Grant ID 94031444).Peer reviewe

    The rectenna device : from theory to practice (a review)

    Get PDF
    This review article provides the state-of-art research and developments of the rectenna device and its two main components – the antenna and the rectifier. Furthermore, the history, efficiency trends, and socioeconomic impact of its research are also featured. The rectenna (RECTifying antENNA), which was first demonstrated by William C. Brown in 1964 as a receiver for microwave power transmission, is now increasingly researched as a means of harvesting solar radiation. Tapping into the growing photovoltaic market, the attraction of the rectenna concept is the potential for devices that, in theory, are not limited in efficiency by the Shockley–Queisser limit. In this review, the history and operation of this 40-year old device concept are explored in the context of power transmission and the ever increasing interest in its potential applications at terahertz frequencies, through the infrared and visible spectra. Recent modeling approaches that have predicted controversially high efficiency values at these frequencies are critically examined. It is proposed that to unlock any of the promised potential in the solar rectenna concept, there is a need for each constituent part to be improved beyond the current best performance, with the existing nanometer scale antennas, the rectification and the impedance matching solutions all falling short of the necessary efficiencies at terahertz frequencies. Advances in the fabrication, characterization, and understanding of the antenna and the rectifier are reviewed, and common solar rectenna design approaches are summarized. Finally, the socioeconomic impact of success in this field is discussed and future work is proposed

    Superlattices of gadolinium and bismuth based thallium dichalcogenides as potential magnetic topological insulators

    No full text
    This article belongs to the Section Theory and Simulation of Nanostructures.Using relativistic spin-polarized density functional theory calculations we investigate magnetism, electronic structure and topology of the ternary thallium gadolinium dichalcogenides TlGdZ2 (Z= Se and Te) as well as superlattices on their basis. We find TlGdZ2 to have an antiferromagnetic exchange coupling both within and between the Gd layers, which leads to frustration and a complex magnetic structure. The electronic structure calculations reveal both TlGdSe2 and TlGdTe2 to be topologically trivial semiconductors. However, as we show further, a three-dimensional (3D) magnetic topological insulator (TI) state can potentially be achieved by constructing superlattices of the TlGdZ2/(TlBiZ2)n type, in which structural units of TlGdZ2 are alternated with those of the isomorphic TlBiZ2 compounds, known to be non-magnetic 3D TIs. Our results suggest a new approach for achieving 3D magnetic TI phases in such superlattices which is applicable to a large family of thallium rare-earth dichalcogenides and is expected to yield a fertile and tunable playground for exotic topological physics.M.M.O. and M.B. acknowledge the support by Spanish Ministerio de Ciencia e Innovación (Grant No. PID2019-103910GB-I00) and the University of the Basque Country (Grant no. IT1527-22). A.Yu.V. and E.K.P. acknowledge support from the Ministry of Education and Science of the Russian Federation within State Task No. FSWM-2020-0033 (in the part of bulk and surface electronic structure calculations). E.V.C. acknowledges support from Saint Petersburg State University (Grant ID No. 90383050). Yu.M.K. acknowledges support from the Government research assignment for ISPMS SB RAS, project FWRW-2022-0001 (in the part of the topological classification of bulk band structure).Peer reviewe

    Superlattices of Gadolinium and Bismuth Based Thallium Dichalcogenides as Potential Magnetic Topological Insulators

    Get PDF
    Using relativistic spin-polarized density functional theory calculations we investigate magnetism, electronic structure and topology of the ternary thallium gadolinium dichalcogenides TlGdZ2 (Z= Se and Te) as well as superlattices on their basis. We find TlGdZ2 to have an antiferromagnetic exchange coupling both within and between the Gd layers, which leads to frustration and a complex magnetic structure. The electronic structure calculations reveal both TlGdSe2 and TlGdTe2 to be topologically trivial semiconductors. However, as we show further, a three-dimensional (3D) magnetic topological insulator (TI) state can potentially be achieved by constructing superlattices of the TlGdZ2/(TlBiZ2)n type, in which structural units of TlGdZ2 are alternated with those of the isomorphic TlBiZ2 compounds, known to be non-magnetic 3D TIs. Our results suggest a new approach for achieving 3D magnetic TI phases in such superlattices which is applicable to a large family of thallium rare-earth dichalcogenides and is expected to yield a fertile and tunable playground for exotic topological physics
    corecore