97 research outputs found

    Risk of cardiovascular disease and total mortality in adults with type 1 diabetes: Scottish registry linkage study

    Get PDF
    <p>Background: Randomized controlled trials have shown the importance of tight glucose control in type 1 diabetes (T1DM), but few recent studies have evaluated the risk of cardiovascular disease (CVD) and all-cause mortality among adults with T1DM. We evaluated these risks in adults with T1DM compared with the non-diabetic population in a nationwide study from Scotland and examined control of CVD risk factors in those with T1DM.</p> <p>Methods and Findings: The Scottish Care Information-Diabetes Collaboration database was used to identify all people registered with T1DM and aged ≥20 years in 2005–2007 and to provide risk factor data. Major CVD events and deaths were obtained from the national hospital admissions database and death register. The age-adjusted incidence rate ratio (IRR) for CVD and mortality in T1DM (n = 21,789) versus the non-diabetic population (3.96 million) was estimated using Poisson regression. The age-adjusted IRR for first CVD event associated with T1DM versus the non-diabetic population was higher in women (3.0: 95% CI 2.4–3.8, p<0.001) than men (2.3: 2.0–2.7, p<0.001) while the IRR for all-cause mortality associated with T1DM was comparable at 2.6 (2.2–3.0, p<0.001) in men and 2.7 (2.2–3.4, p<0.001) in women. Between 2005–2007, among individuals with T1DM, 34 of 123 deaths among 10,173 who were <40 years and 37 of 907 deaths among 12,739 who were ≥40 years had an underlying cause of death of coma or diabetic ketoacidosis. Among individuals 60–69 years, approximately three extra deaths per 100 per year occurred among men with T1DM (28.51/1,000 person years at risk), and two per 100 per year for women (17.99/1,000 person years at risk). 28% of those with T1DM were current smokers, 13% achieved target HbA1c of <7% and 37% had very poor (≥9%) glycaemic control. Among those aged ≥40, 37% had blood pressures above even conservative targets (≥140/90 mmHg) and 39% of those ≥40 years were not on a statin. Although many of these risk factors were comparable to those previously reported in other developed countries, CVD and mortality rates may not be generalizable to other countries. Limitations included lack of information on the specific insulin therapy used.</p> <p>Conclusions: Although the relative risks for CVD and total mortality associated with T1DM in this population have declined relative to earlier studies, T1DM continues to be associated with higher CVD and death rates than the non-diabetic population. Risk factor management should be improved to further reduce risk but better treatment approaches for achieving good glycaemic control are badly needed.</p&gt

    The blue channel of the Keck low-resolution imaging spectrometer

    Get PDF
    This paper summarizes the optical, mechanical, electrical, and software design of LRIS-B, the blue channel of the Keck Low Resolution and Imaging Spectrograph. The LRIS-B project will shortly be completing the existing LRIS instrument through the addition of dichroic beamsplitters, grisms to disperse light on the blue channel, broad-band u, B, and V photometric filters, a blue and near-UV transmitting camera lens, and a large format blue-sensitive CCD detector. LRIS-B will also introduce piezoelectric xy-actuation of the CCD detector inside its Dewar, in order to compensate for flexure in the existing instrument; ultimately the red-side CCD detector will be similarly equipped, its PZT xy-stage being independently programmed. The optical design of the LRIS-B camera uses only fused silica and calcium fluoride elements, and includes a decentered meniscus element to compensate for coma introduced by the LRIS off-axis paraboloid collimator. The design of the blue channel grisms have been optimized for maximum blaze efficiency, the highest dispersion grism having a groove density of 1200 gr/mm. Optical elements not in use at any given time will be stowed in carousels externally mounted to the instrument sidewalls. The entire instrument is designed to permit remote operation

    Historic 2005 toxic bloom of Alexandrium fundyense in the western Gulf of Maine : 2. Coupled biophysical numerical modeling

    Get PDF
    Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 113 (2008): C07040, doi:10.1029/2007JC004602.A coupled physical/biological modeling system was used to hindcast a massive Alexandrium fundyense bloom that occurred in the western Gulf of Maine in 2005 and to investigate the relative importance of factors governing the bloom's initiation and development. The coupled system consists of a state-of-the-art, free-surface primitive equation Regional Ocean Modeling System (ROMS) tailored for the Gulf of Maine (GOM) using a multinested configuration, and a population dynamics model for A. fundyense. The system was forced by realistic momentum and buoyancy fluxes, tides, river runoff, observed A. fundyense benthic cyst abundance, and climatological nutrient fields. Extensive comparisons were made between simulated (both physical and biological) fields and in situ observations, revealing that the hindcast model is capable of reproducing the temporal evolution and spatial distribution of the 2005 bloom. Sensitivity experiments were then performed to distinguish the roles of three major factors hypothesized to contribute to the bloom: (1) the high abundance of cysts in western GOM sediments; (2) strong ‘northeaster' storms with prevailing downwelling-favorable winds; and (3) a large amount of fresh water input due to abundant rainfall and heavy snowmelt. Model results suggest the following. (1) The high abundance of cysts in western GOM was the primary factor of the 2005 bloom. (2) Wind-forcing was an important regulator, as episodic bursts of northeast winds caused onshore advection of offshore populations. These downwelling favorable winds accelerated the alongshore flow, resulting in transport of high cell concentrations into Massachusetts Bay. A large regional bloom would still have happened, however, even with normal or typical winds for that period. (3) Anomalously high river runoff in 2005 resulted in stronger buoyant plumes/currents, which facilitated the transport of cell population to the western GOM. While affecting nearshore cell abundance in Massachusetts Bay, the buoyant plumes were confined near to the coast, and had limited impact on the gulf-wide bloom distribution.Research support was provided through the Woods Hole Center for Oceans and Human Health, National Science Foundation (NSF) grant OCE-0430723 and National Institute of Environmental Health Science (NIEHS) grant 1-P50-ES012742-01, ECOHAB program through NSF grant OCE-9808173 and NOAA grant NA96OP0099, and GOMTOX program through NOAA grant NA06NOS4780245

    The blue channel of the Keck low-resolution imaging spectrometer

    Get PDF
    This paper summarizes the optical, mechanical, electrical, and software design of LRIS-B, the blue channel of the Keck Low Resolution and Imaging Spectrograph. The LRIS-B project will shortly be completing the existing LRIS instrument through the addition of dichroic beamsplitters, grisms to disperse light on the blue channel, broad-band u, B, and V photometric filters, a blue and near-UV transmitting camera lens, and a large format blue-sensitive CCD detector. LRIS-B will also introduce piezoelectric xy-actuation of the CCD detector inside its Dewar, in order to compensate for flexure in the existing instrument; ultimately the red-side CCD detector will be similarly equipped, its PZT xy-stage being independently programmed. The optical design of the LRIS-B camera uses only fused silica and calcium fluoride elements, and includes a decentered meniscus element to compensate for coma introduced by the LRIS off-axis paraboloid collimator. The design of the blue channel grisms have been optimized for maximum blaze efficiency, the highest dispersion grism having a groove density of 1200 gr/mm. Optical elements not in use at any given time will be stowed in carousels externally mounted to the instrument sidewalls. The entire instrument is designed to permit remote operation

    Cognition based bTBI mechanistic criteria; a tool for preventive and therapeutic innovations

    Get PDF
    Blast-induced traumatic brain injury has been associated with neurodegenerative and neuropsychiatric disorders. To date, although damage due to oxidative stress appears to be important, the specific mechanistic causes of such disorders remain elusive. Here, to determine the mechanical variables governing the tissue damage eventually cascading into cognitive deficits, we performed a study on the mechanics of rat brain under blast conditions. To this end, experiments were carried out to analyse and correlate post-injury oxidative stress distribution with cognitive deficits on a live rat exposed to blast. A computational model of the rat head was developed from imaging data and validated against in vivo brain displacement measurements. The blast event was reconstructed in silico to provide mechanistic thresholds that best correlate with cognitive damage at the regional neuronal tissue level, irrespectively of the shape or size of the brain tissue types. This approach was leveraged on a human head model where the prediction of cognitive deficits was shown to correlate with literature findings. The mechanistic insights from this work were finally used to propose a novel helmet design roadmap and potential avenues for therapeutic innovations against blast traumatic brain injury
    corecore