19 research outputs found

    Simplified sample handing in mass spectrometry based protein research - focus on protein phosphorylation

    Get PDF
    The human genome comprises roughly 20 000 protein coding genes. Proteins are the building material for cells and tissues, and proteins are functional compounds having an important role in many cellular responses, such as cell signalling. In multicellular organisms such as humans, cells need to communicate with each other in order to maintain a normal function of the tissues within the body. This complex signalling between and within cells is transferred by proteins and their post-translational modifications, one of the most important being phosphorylation. The work presented here concerns the development and use of tools for phosphorylation analysis. Mass spectrometers have become essential tools to study proteins and proteomes. In mass spectrometry oriented proteomics, proteins can be identified and their post-translational modifications can be studied. In this Ph.D. thesis the objectives were to improve the robustness of sample handling methods prior to mass spectrometry analysis for peptides and their phosphorylation status. The focus was to develop strategies that enable acquisition of more MS measurements per sample, higher quality MS spectra and simplified and rapid enrichment procedures for phosphopeptides. Furthermore, an objective was to apply these methods to characterize phosphorylation sites of phosphopeptides. In these studies a new MALDI matrix was developed which allowed more homogenous, intense and durable signals to be acquired when compared to traditional CHCA matrix. This new matrix along with other matrices was subsequently used to develop a new method that combines multiple spectra from different matrises from identical peptides. With this approach it was possible to identify more phosphopeptides than with conventional LC/ESI-MS/MS methods, and to use 5 times less sample. Also, phosphopeptide affinity MALDI target was prepared to capture and immobilise phosphopeptides from a standard peptide mixture while maintaining their spatial orientation. In addition a new protocol utilizing commercially available conductive glass slides was developed that enabled fast and sensitive phosphopeptide purification. This protocol was applied to characterize the in vivo phosphorylation of a signalling protein, NFATc1. Evidence for 12 phosphorylation sites were found, and many of those were found in multiply phosphorylated peptidesSiirretty Doriast

    Stability condition for the drive bunch in a collinear wakefield accelerator

    Full text link
    The beam breakup instability of the drive bunch in the structure-based collinear wakefield accel- erator is considered and a stabilizing method is proposed. The method includes using the specially designed beam focusing channel, applying the energy chirp along the electron bunch, and keeping energy chirp constant during the drive bunch deceleration. A stability condition is derived that defines the limit on the accelerating field for the witness bunch.Comment: 10 pages, 6 figure

    The impacts of nature connectedness on children's well-being : Systematic literature review

    Get PDF
    Direct and indirect well-being benefits of children and adolescent's nature connectedness are a growing societal interest. Accordingly, they are increasingly studied and the field of research is evolving rapidly. However, the conceptualization and operationalization of nature connectedness, well-being and their interaction, as well as the empirical methods that are used to analyze them, vary remarkably. We conducted a systematic literature review on how children's nature connectedness and its well-being impacts have been studied during the past two decades and what are the key findings regarding the connection. Our analysis covered qualitative and quantitative studies, which all showed the positive effects of nature connectedness on well-being. Qualitative studies gave a voice to children in defining nature and its well-being impacts, while quantitative studies measured the connection using various nature connectedness scales. We conclude with recommendations for developing the research field in the future to fulfil current research gaps and to guide societal development to support children's well-being.© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).fi=vertaisarvioitu|en=peerReviewed

    Data-Independent Acquisition Mass Spectrometry in Metaproteomics of Gut Microbiota—Implementation and Computational Analysis

    Get PDF
    Metagenomic approaches focus on taxonomy or gene annotation but lack power in defining functionality of gut microbiota. Therefore, metaproteomics approaches have been introduced to overcome this limitation. However, the common metaproteomics approach uses data-dependent acquisition mass spectrometry, which is known to have limited reproducibility when analyzing samples with complex microbial composition. In this work, we provide a proof-of-concept for data-independent acquisition (DIA) metaproteomics. To this end, we analyze metaproteomes using DIA mass spectrometry and introduce an open-source data analysis software package diatools, which enables accurate and consistent quantification of DIA metaproteomics data. We demonstrate the feasibility of our approach in gut microbiota metaproteomics using laboratory assembled microbial mixtures as well as human fecal samples. </p

    Orphan G protein-coupled receptor GPRC5A modulates integrin β1-mediated epithelial cell adhesion

    Get PDF
    G-Protein Coupled Receptor (GPCR), Class C, Group 5, Member A (GPRC5A) has been implicated in several malignancies. The underlying mechanisms, however, remain poorly understood. Using a panel of human cell lines, we demonstrate that CRISPR/Cas9-mediated knockout and RNAi-mediated depletion of GPRC5A impairs cell adhesion to integrin substrates: collagens I and IV, fibronectin, as well as to extracellular matrix proteins derived from the Engelbreth-Holm-Swarm (EHS) mouse sarcoma (Matrigel). Consistent with the phenotype, knock-out of GPRC5A correlated with a reduced integrin β1 (ITGB1) protein expression, impaired phosphorylation of the focal adhesion kinase (FAK), and lower activity of small GTPases RhoA and Rac1. Furthermore, we provide the first evidence for a direct interaction between GPRC5A and a receptor tyrosine kinase EphA2, an upstream regulator of FAK, although its contribution to the observed adhesion phenotype is unclear. Our findings reveal an unprecedented role for GPRC5A in regulation of the ITGB1-mediated cell adhesion and it's downstream signaling, thus indicating a potential novel role for GPRC5A in human epithelial cancers.</p

    Phosphorylation of NFATC1 at PIM1 target sites is essential for its ability to promote prostate cancer cell migration and invasion

    Get PDF
    Background Progression of prostate cancer from benign local tumors to metastatic carcinomas is a multistep process. Here we have investigated the signaling pathways that support migration and invasion of prostate cancer cells, focusing on the role of the NFATC1 transcription factor and its post-translational modifications. We have previously identified NFATC1 as a substrate for the PIM1 kinase and shown that PIM1-dependent phosphorylation increases NFATC1 activity without affecting its subcellular localization. Both PIM kinases and NFATC1 have been reported to promote cancer cell migration, invasion and angiogenesis, but it has remained unclear whether the effects of NFATC1 are phosphorylation-dependent and which downstream targets are involved. Methods We used mass spectrometry to identify PIM1 phosphorylation target sites in NFATC1, and analysed their functional roles in three prostate cancer cell lines by comparing phosphodeficient mutants to wild-type NFATC1. We used luciferase assays to determine effects of phosphorylation on NFAT-dependent transcriptional activity, and migration and invasion assays to evaluate effects on cell motility. We also performed a microarray analysis to identify novel PIM1/NFATC1 targets, and validated one of them with both cellular expression analyses and in silico in clinical prostate cancer data sets. Results Here we have identified ten PIM1 target sites in NFATC1 and found that prevention of their phosphorylation significantly decreases the transcriptional activity as well as the pro-migratory and pro-invasive effects of NFATC1 in prostate cancer cells. We observed that also PIM2 and PIM3 can phosphorylate NFATC1, and identified several novel putative PIM1/NFATC1 target genes. These include the ITGA5 integrin, which is differentially expressed in the presence of wild-type versus phosphorylation-deficient NFATC1, and which is coexpressed with PIM1 and NFATC1 in clinical prostate cancer specimens. Conclusions Based on our data, phosphorylation of PIM1 target sites stimulates NFATC1 activity and enhances its ability to promote prostate cancer cell migration and invasion. Therefore, inhibition of the interplay between PIM kinases and NFATC1 may have therapeutic implications for patients with metastatic forms of cancer.Peer reviewe

    Phosphorylation of NFATC1 at PIM1 target sites is essential for its ability to promote prostate cancer cell migration and invasion

    Get PDF
    Background Progression of prostate cancer from benign local tumors to metastatic carcinomas is a multistep process. Here we have investigated the signaling pathways that support migration and invasion of prostate cancer cells, focusing on the role of the NFATC1 transcription factor and its post-translational modifications. We have previously identified NFATC1 as a substrate for the PIM1 kinase and shown that PIM1-dependent phosphorylation increases NFATC1 activity without affecting its subcellular localization. Both PIM kinases and NFATC1 have been reported to promote cancer cell migration, invasion and angiogenesis, but it has remained unclear whether the effects of NFATC1 are phosphorylation-dependent and which downstream targets are involved. Methods We used mass spectrometry to identify PIM1 phosphorylation target sites in NFATC1, and analysed their functional roles in three prostate cancer cell lines by comparing phosphodeficient mutants to wild-type NFATC1. We used luciferase assays to determine effects of phosphorylation on NFAT-dependent transcriptional activity, and migration and invasion assays to evaluate effects on cell motility. We also performed a microarray analysis to identify novel PIM1/NFATC1 targets, and validated one of them with both cellular expression analyses and in silico in clinical prostate cancer data sets. Results Here we have identified ten PIM1 target sites in NFATC1 and found that prevention of their phosphorylation significantly decreases the transcriptional activity as well as the pro-migratory and pro-invasive effects of NFATC1 in prostate cancer cells. We observed that also PIM2 and PIM3 can phosphorylate NFATC1, and identified several novel putative PIM1/NFATC1 target genes. These include the ITGA5 integrin, which is differentially expressed in the presence of wild-type versus phosphorylation-deficient NFATC1, and which is coexpressed with PIM1 and NFATC1 in clinical prostate cancer specimens. Conclusions Based on our data, phosphorylation of PIM1 target sites stimulates NFATC1 activity and enhances its ability to promote prostate cancer cell migration and invasion. Therefore, inhibition of the interplay between PIM kinases and NFATC1 may have therapeutic implications for patients with metastatic forms of cancer

    Serum/plasma proteomics : Methods and Protocols

    No full text
    Blood protein measurements are used frequently in the clinic in the assessment of patient health. Nevertheless, there remains the need for new biomarkers with better diagnostic specificities. With the advent of improved technology for bioanalysis and the growth of biobanks including collections from specific disease-risk cohorts, the plasma proteome has remained a target of proteomics research towards the characterization of disease related biomarkers. The following protocol presents a workflow for serum/plasma proteomics including details of sample preparation both with and without immunoaffinity depletion of the most abundant plasma proteins, and methodology for selected reaction monitoring mass spectrometry validation. </p

    Orphan G protein-coupled receptor GPRC5A modulates integrin beta 1-mediated epithelial cell adhesion

    Get PDF
    G-Protein Coupled Receptor (GPCR), Class C, Group 5, Member A (GPRC5A) has been implicated in several malignancies. The underlying mechanisms, however, remain poorly understood. Using a panel of human cell lines, we demonstrate that CRISPR/Cas9-mediated knockout and RNAi-mediated depletion of GPRC5A impairs cell adhesion to integrin substrates: collagens I and IV, fibronectin, as well as to extracellular matrix proteins derived from the Engelbreth-Holm-Swarm (EHS) mouse sarcoma (Matrigel). Consistent with the phenotype, knock-out of GPRC5A correlated with a reduced integrin beta 1 (ITGB1) protein expression, impaired phosphorylation of the focal adhesion kinase (FAK), and lower activity of small GTPases RhoA and Rac1. Furthermore, we provide the first evidence for a direct interaction between GPRC5A and a receptor tyrosine kinase EphA2, an upstream regulator of FAK, although its contribution to the observed adhesion phenotype is unclear. Our findings reveal an unprecedented role for GPRC5A in regulation of the ITGB1-mediated cell adhesion and it's downstream signaling, thus indicating a potential novel role for GPRC5A in human epithelial cancers.Peer reviewe

    Enrichment and sequencing of phosphopeptides on indium tin oxide coated glass slides

    No full text
    Unambiguous identification of phosphorylation sites is of premier importance to biologists, who seek to understand the role of phosphorylation from the perspective of site-specific control of biological phenomena. Despite this widely asked and highly specific information, many methods developed are aimed at analysis of complete proteomes, indeed even phospho-proteomes, surpassing the basic requests of many biologists. We have therefore further developed a simple method that specifically deals with the analysis of multiple phosphorylation sites on singular proteins or small collections of proteins. With this method, the whole purification process, from sample application to MALDI-MS analysis, can be performed on commercially available indium tin oxide (ITO) coated glass slides. We show that fifteen (15) samples can be purified within one hour, and that low femtomole sensitivity can be achieved. This limit of identification is demonstrated by the successful MS/MS-based identification of 6 fmol of monophosphopeptide from β-casein. We demonstrate that the method can be applied for identifying phosphorylation sites from recombinant and cell-derived biological protein samples. Since ITO-coated glass slides are inexpensive and available from several suppliers the method is readily and inexpensively available to other researchers. Taken together, the presented protocols and materials render this method as an extremely fast and sensitive phosphopeptide identification protocol that should aid biologists in discovery and validation of phosphorylation sites
    corecore