36 research outputs found

    Biopreservation of hepatocytes: current concepts on hypothermic preservation, cryopreservation, and vitrification

    Get PDF
    Isolated liver cells (primarily isolated hepatocytes) have found important applications in science and medicine over the past 40 years in a wide range of areas, including physiological studies, investigations on liver metabolism, organ preservation and drug de-toxification, experimental and clinical transplantation. An integral component of many of these works is the need to store the isolated cells, either for short or long-term periods. This review covers the biopreservation of liver cells, with a focus on the history of liver cell biopreservation, the application of hypothermia for short-term storage, standard cryopreservation methods for isolated hepatocytes, the biopreservation of other types of liver cells, and recent developments such as vitrification of hepatocytes. By understanding the basis for the different approaches, it will be possible to select the best options for liver cell biopreservation in different applications, and identify ways to improve preservation protocols for the future.Fil: Fuller, Barry J.. University College London; Estados UnidosFil: Petrenko, Alexander Y.. Ukraine Academy of Sciences; UcraniaFil: Rodriguez, Joaquin Valentin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Secretaria de Ciencia y Técnica. Centro Binacional de Investigación en Criobiología Clínica y Aplicada; ArgentinaFil: Somov, Alexander Y.. Ukraine Academy of Sciences; UcraniaFil: Balaban, Cecilia Lucía. Universidad Nacional de Rosario. Secretaria de Ciencia y Técnica. Centro Binacional de Investigación en Criobiología Clínica y Aplicada; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; ArgentinaFil: Guibert, Edgardo Elvio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. Universidad Nacional de Rosario. Secretaria de Ciencia y Técnica. Centro Binacional de Investigación en Criobiología Clínica y Aplicada; Argentin

    Model-Based Security Testing

    Full text link
    Security testing aims at validating software system requirements related to security properties like confidentiality, integrity, authentication, authorization, availability, and non-repudiation. Although security testing techniques are available for many years, there has been little approaches that allow for specification of test cases at a higher level of abstraction, for enabling guidance on test identification and specification as well as for automated test generation. Model-based security testing (MBST) is a relatively new field and especially dedicated to the systematic and efficient specification and documentation of security test objectives, security test cases and test suites, as well as to their automated or semi-automated generation. In particular, the combination of security modelling and test generation approaches is still a challenge in research and of high interest for industrial applications. MBST includes e.g. security functional testing, model-based fuzzing, risk- and threat-oriented testing, and the usage of security test patterns. This paper provides a survey on MBST techniques and the related models as well as samples of new methods and tools that are under development in the European ITEA2-project DIAMONDS.Comment: In Proceedings MBT 2012, arXiv:1202.582

    Observation of the Cabibbo-suppressed decay Xi_c+ -> p K- pi+

    Full text link
    We report the first observation of the Cabibbo-suppressed charm baryon decay Xi_c+ -> p K- pi+. We observe 150 +- 22 events for the signal. The data were accumulated using the SELEX spectrometer during the 1996-1997 fixed target run at Fermilab, chiefly from a 600 GeV/c Sigma- beam. The branching fractions of the decay relative to the Cabibbo-favored Xi_c+ -> Sigma+ K- pi+ and Xi_c+ -> X- pi+ pi+ are measured to be B(Xi_c+ -> p K- pi+)/B(Xi_c+ -> Sigma+ K- pi+) = 0.22 +- 0.06 +- 0.03 and B(Xi_c+ -> p K- pi+)/B(Xi_c+ -> X- pi+ pi+) = 0.20 +- 0.04 +- 0.02, respectively.Comment: 5 pages, RevTeX, 3 figures (postscript), Submitted to Phys. Rev. Let

    Biopreservation of Hepatocytes: Current Concepts on Hypothermic Preservation, Cryopreservation, And Vitrification

    No full text
    Isolated liver cells (primarily isolated hepatocytes) have found important applications in science and medicine over the past 40 years in a wide range of areas, including physiological studies, investigations on liver metabolism, organ preservation and drug de-toxification, experimental and clinical transplantation. An integral component of many of these works is the need to store the isolated cells, either for short or long-term periods. This review covers the biopreservation of liver cells, with a focus on the history of liver cell biopreservation, the application of hypothermia for short-term storage, standard cryopreservation methods for isolated hepatocytes, the biopreservation of other types of liver cells, and recent developments such as vitrification of hepatocytes. By understanding the basis for the different approaches, it will be possible to select the best options for liver cell biopreservation in different applications, and identify ways to improve preservation protocols for the future.Fil: Fuller, Barry J.. University College London; Estados UnidosFil: Petrenko, Alexander Y.. Ukraine Academy of Sciences; UcraniaFil: Rodriguez, Joaquin Valentin. Universidad Nacional de Rosario. Secretaria de Ciencia y Tecnica. Centro Binacional de Investigación en Criobiologia Clinica y Aplicada; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Somov, Alexander Y.. Ukraine Academy of Sciences; UcraniaFil: Balaban, Cecilia Lucía. Universidad Nacional de Rosario. Secretaria de Ciencia y Tecnica. Centro Binacional de Investigación en Criobiologia Clinica y Aplicada; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Guibert, Edgardo Elvio. Universidad Nacional de Rosario. Secretaria de Ciencia y Tecnica. Centro Binacional de Investigación en Criobiologia Clinica y Aplicada; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Coaxial Alginate Hydrogels : From Self-Assembled 3D Cellular Constructs to Long-Term Storage

    Get PDF
    Alginate as a versatile naturally occurring biomaterial has found widespread use in the biomedical field due to its unique features such as biocompatibility and biodegradability. The ability of its semipermeable hydrogels to provide a favourable microenvironment for clinically relevant cells made alginate encapsulation a leading technology for immunoisolation, 3D culture, cryopreservation as well as cell and drug delivery. The aim of this work is the evaluation of structural properties and swelling behaviour of the core-shell capsules for the encapsulation of multipotent stromal cells (MSCs), their 3D culture and cryopreservation using slow freezing. The cells were encapsulated in core-shell capsules using coaxial electrospraying, cultured for 35 days and cryopreserved. Cell viability, metabolic activity and cell–cell interactions were analysed. Cryopreservation of MSCs-laden core-shell capsules was performed according to parameters pre-selected on cell-free capsules. The results suggest that core-shell capsules produced from the low viscosity high-G alginate are superior to high-M ones in terms of stability during in vitro culture, as well as to solid beads in terms of promoting formation of viable self-assembled cellular structures and maintenance of MSCs functionality on a long-term basis. The application of 0.3 M sucrose demonstrated a beneficial effect on the integrity of capsules and viability of formed 3D cell assemblies, as compared to 10% dimethyl sulfoxide (DMSO) alone. The proposed workflow from the preparation of core-shell capsules with self-assembled cellular structures to the cryopreservation appears to be a promising strategy for their off-the-shelf availability

    A 2,5-Dihydroxybenzoic Acid–Gelatin Conjugate Inhibits the Basal and Hsp90-Stimulated Migration and Invasion of Tumor Cells

    No full text
    The extracellular cell surface-associated and soluble heat shock protein 90 (Hsp90) is known to participate in the migration and invasion of tumor cells. Earlier, we demonstrated that plasma membrane-associated heparan sulfate proteoglycans (HSPGs) bind the extracellular Hsp90 and thereby promote the Hsp90-mediated motility of tumor cells. Here, we showed that a conjugate of 2,5-dihydroxybenzoic acid with gelatin (2,5-DHBA–gelatin), a synthetic polymer with heparin-like properties, suppressed the basal (unstimulated) migration and invasion of human glioblastoma A-172 and fibrosarcoma HT1080 cells, which was accompanied by the detachment of a fraction of Hsp90 from cell surface HSPGs. The polymeric conjugate also inhibited the migration/invasion of cells stimulated by exogenous soluble native Hsp90, which correlated with the inhibition of the attachment of soluble Hsp90 to cell surface HSPGs. The action of the 2,5-DHBA–gelatin conjugate on the motility of A-172 and HT1080 cells was similar to that of heparin. The results demonstrate a potential of the 2,5-DHBA–gelatin polymer for the development of antimetastatic drugs targeting cell motility and a possible role of extracellular Hsp90 in the suppression of the migration and invasion of tumor cells mediated by the 2,5-DHBA–gelatin conjugate and heparin

    Isolation and identification of chitin in three-dimensional skeleton of Aplysina fistularis marine sponge

    No full text
    The recent discovery of chitin within skeletons of numerous marine and freshwater sponges (Porifera) stimulates further experiments to identify this structural aminopolysaccharide in new species of these aquatical animals. Aplysina fistularis (Verongida: Demospongiae: Porifera) is well known to produce biologically active bromotyrosines. Here, we present a detailed study of the structural and physico-chemical properties of the three-dimensional skeletal scaffolds of this sponge. Calcofluor white staining, Raman and IR spectroscopy, ESI-MS as well as chitinase digestion test were applied in order to unequivocally prove the first discovery of α-chitin in skeleton of A. fistularis
    corecore