22 research outputs found

    Composition of woody species in a dynamic forest-woodland-savannah mosaic in Uganda: implications for conservation and management

    Get PDF
    ForestÂżwoodlandÂżsavannah mosaics are a common feature in the East African landscape. For the conservation of the woody species that occur in such landscapes, the species patterns and the factors that maintain it need to be understood. We studied the woody species distribution in a forestÂżwoodlandÂżsavannah mosaic in Budongo Forest Reserve, Uganda. The existing vegetation gradients were analyzed using data from a total of 591 plots of 400 or 500 m2 each. Remotely sensed data was used to explore current vegetation cover and the gradients there in for the whole area. A clear species gradient exists in the study area ranging from forest, where there is least disturbance, to wooded grassland, where frequent fire disturbance occurs. Most species are not limited to a specific part of the gradient although many show a maximum abundance at some point along the gradient. Fire and accessibility to the protected area were closely related to variation in species composition along the ordination axis with species like Cynometra alexandri and Uvariopsis congensis occurring at one end of the gradient and Combretum guenzi and Lonchocarpus laxiflorus at the other. The vegetation cover classes identified in the area differed in diversity, density and, especially, basal area. All vegetation cover classes, except open woodland, had indicator species. Diospyros abyssinica, Uvariopsis congensis, Holoptelea grandis and all Celtis species were the indicator species for the forest class, Terminalia velutina and Albizia grandbracteata for closed woodland, Grewia mollis and Combretum mole for very open woodland and Lonchocarpus laxiflorus, Grewia bicolor and Combretum guenzi for the wooded grassland class. Eleven of the species occurred in all cover classes and most of the species that occurred in more than one vegetation cover class showed peak abundance in a specific cover class. Species composition in the study area changes gradually from forest to savannah. Along the gradient, the cover classes are distinguishable in terms of species composition and vegetation structure. These classes are, however, interrelated in species composition. For conservation of the full range of the species within this East African landscape, the mosaic has to be managed as an integrated whole. Burning should be varied over the area with the forest not being burnt at all and the wooded grassland burnt regularly. The different vegetation types that occur between these two extremes should be maintained using a varied fire regim

    Trap and soil monolith sampled edaphic spiders (arachnida: araneae) in Araucaria angustifolia forest Aranhas (arachnida: araneae) edáficas amostradas por armadilhas e monólitos de solo em florestas com Araucaria angustifolia

    Get PDF
    Forests with Araucaria angustifolia (Bert.) O. Kuntze trees are endangered in Brazil, and information on the diversity of soil spider families associated to these environments is practically inexistent. The present study was set up to evaluate the abundance and diversity of soil spider families in natural and reforested Araucaria forests, impacted or not by fire, and to identify the most efficient method to collect these organisms. The study was conducted in four areas: native forest with predominance of Araucaria (NF); Araucaria reforestation (R); Araucaria reforestation submitted to an accidental fire (RF); and native grass pasture with native Araucaria and submitted to an intense accidental fire (NPF). Considering both sampling methods (Monolith and Pitfall traps), 20 spider families were identified. The pitfall trap method was more effective as it captured 19 out of the 20 recorded families, while the Monolith method extracted only ten spider families. Spider family abundance and Shannon's diversity index (H) were affected by the employed collection method; the values for these attributes were always higher for the NF and lower for the NPF. Correspondence analysis (CA) showed a spatial separation among spider familiy assemblages from the different studied areas. It is suggested that changes in the abundance of soil spider families in Araucaria forests are mainly caused by recurrent human intervention over the last few years.<br>As florestas com Araucaria angustifolia (Bert.) O. Kuntze estão ameaçadas de extinção no Brasil, e são praticamente inexistentes as informações sobre a diversidade de famílias de aranhas de solo associadas nestes ambientes. O estudo teve o objetivo de avaliar, em florestas com araucária naturais e reflorestadas, impactadas ou não pela queima acidental, a abundância e diversidade de famílias de aranhas, além de identificar o método mais eficiente para coletar estes organismos. O estudo foi conduzido em quatro áreas: floresta nativa com predominância de araucária (NF); reflorestamento de araucária (R); reflorestamento de araucária submetido a incêndio acidental (RF); e pastagem natural com araucárias nativas e ocorrência de incêndio acidental (NPF). Considerando os dois métodos de amostragem (Monólito e armadilhas de solo), foram identificadas 20 famílias de aranhas associadas às áreas. O método das armadilhas de solo foi mais eficiente, capturando 19 das 20 famílias registradas, enquanto o do Monólito extraiu apenas dez destas famílias de aranhas. A abundância de famílias de aranhas e o índice de diversidade de Shannon (H) foram afetados pelo método de coleta utilizado, sendo os valores destes atributos sempre superiores na NF e inferiores na NPF. A análise de correspondência (AC) demonstrou que existe separação espacial entre as áreas estudadas. Sugere-se que as modificações na abundância de famílias de aranhas de solo sejam provocadas principalmente pelas intervenções antrópicas que as florestas de araucária vêm sofrendo nos últimos anos
    corecore