9 research outputs found

    Hygraula nitens, the only native aquatic caterpillar in New Zealand, prefers feeding on an alien submerged plant

    No full text
    International audienceHygraula nitens is a New Zealand native moth with aquatic larvae that feed on submerged aquatic plants. The larvae have been mainly observed using native Potamogeton and Myriophyllum species as a food source, although some studies reported larvae feeding on the alien macrophytes Hydrilla verticillata, Lagarosiphon major and Ceratophyllum demersum. Experimental mesocosm studies showed larvae had a major effect on H. verticillata, C. demersum, L. major, Elodea canadensis and Egeria densa. In both no choice and choice experiments H. nitens larvae showed a clear preference for and the highest consumption of C. demersum, while the native macrophyte Myriophyllum triphyllum ranked fourth out of five alien and two native plant species, indicating a preference of the larvae for alien macrophytes. Additional choice experiments using C. demersum, sampled from different waters in NZ, illustrated that there was a clear difference in H. nitens preference for plants based on their source. However although C. demersum had the lowest leaf dry matter content (LDMC) compared with the other macrophytes, neither the LDMC nor leaf carbon, nitrogen, phosphorus or total phenolic contents alone could explain the preferences of H. nitens, and we conclude that food choice is based on a combination of these and/or additional factors

    Transcriptional regulation of photoprotection in dark-to-light transition—More than just a matter of excess light energy

    No full text
    International audienceIn nature, photosynthetic organisms are exposed to different light spectra and intensities depending on the time of day and atmospheric and environmental conditions. When photosynthetic cells absorb excess light, they induce nonphotochemical quenching to avoid photodamage and trigger expression of “photoprotective” genes. In this work, we used the green alga Chlamydomonas reinhardtii to assess the impact of light intensity, light quality, photosynthetic electron transport, and carbon dioxide on induction of the photoprotective genes ( LHCSR1 , LHCSR3 , and PSBS ) during dark-to-light transitions. Induction (mRNA accumulation) occurred at very low light intensity and was independently modulated by blue and ultraviolet B radiation through specific photoreceptors; only LHCSR3 was strongly controlled by carbon dioxide levels through a putative enhancer function of CIA5, a transcription factor that controls genes of the carbon concentrating mechanism. We propose a model that integrates inputs of independent signaling pathways and how they may help the cells anticipate diel conditions and survive in a dynamic light environment

    Transcriptional regulation of photoprotection in dark-to-light transition - more than just a matter of excess light energy

    No full text
    In nature, photosynthetic organisms are exposed to different light spectra and intensities depending on the time of day and atmospheric and environmental conditions. When photosynthetic cells absorb excess light, they induce non-photochemical quenching to avoid photo-damage and trigger expression of ‘photoprotective’ genes. In this work, we used the green alga Chlamydomonas reinhardtiiChlamydomonas\ reinhardtii to assess the impact of light intensity, light quality, wavelength, photosynthetic electron transport and CO 2 on induction of the ‘photoprotective’ genes ( LHCSR1 , LHCSR3 and PSBS ) during dark-to-light transitions. Induction (mRNA accumulation) occurred at very low light intensity, was independently modulated by blue and UV-B radiation through specific photoreceptors, and only LHCSR3 was strongly controlled by CO2_2 levels through a putative enhancer function of CIA5, a transcription factor that controls genes of the carbon concentrating mechanism. We propose a model that integrates inputs of independent signaling pathways and how they may help the cells anticipate diel conditions and survive in a dynamic light environment

    Light-independent regulation of algal photoprotection by CO2 availability

    No full text
    Photosynthetic algae have evolved mechanisms to cope with suboptimal light and CO2 conditions. When light energy exceeds CO2 fixation capacity, Chlamydomonas reinhardtii activates photoprotection, mediated by LHCSR1/3 and PSBS, and the CO2 Concentrating Mechanism (CCM). How light and CO2 signals converge to regulate these processes remains unclear. Here, we show that excess light activates photoprotection- and CCM-related genes by altering intracellular CO2 concentrations and that depletion of CO2 drives these responses, even in total darkness. High CO2 levels, derived from respiration or impaired photosynthetic fixation, repress LHCSR3/CCM genes while stabilizing the LHCSR1 protein. Finally, we show that the CCM regulator CIA5 also regulates photoprotection, controlling LHCSR3 and PSBS transcript accumulation while inhibiting LHCSR1 protein accumulation. This work has allowed us to dissect the effect of CO2 and light on CCM and photoprotection, demonstrating that light often indirectly affects these processes by impacting intracellular CO2 levels.Human Frontiers Science Program RGP0046/2018French National Research Agency ANR-18-CE20-0006, ANR-17-EURE-0003, ANR-15-IDEX-02Prestige Marie-Curie co-financing grant PRESTIGE-2017-1-0028European Union’s Horizon 2020 751039Carnegie Institution for Science DE-SC0019417Marie Curie Initial Training Network Accliphot FP7-PEPOPLE-2012-ITN, 316427Japan Society for the Promotion of Science 21H04778, 21H05040German Research Foundation HI 739/9.

    Photoprotection is regulated by light-independent CO 2 availability

    No full text
    Abstract Photosynthetic algae cope with suboptimal levels of light and CO 2 . In low CO 2 and excess light, the green alga Chlamydomonas reinhardtii activates a CO 2 Concentrating Mechanism (CCM) and photoprotection; the latter is mediated by LHCSR1/3 and PSBS. How light and CO 2 signals converge to regulate photoprotective responses remains unclear. Here we show that excess light activates expression of photoprotection- and CCM-related genes and that depletion of CO 2 drives these responses, even in total darkness. High CO 2 levels, derived from respiration or impaired photosynthetic fixation, repress LHCSR3 and CCM genes while stabilizing the LHCSR1 protein. We also show that CIA5, which controls CCM genes, is a major regulator of photoprotection, elevating LHCSR3 and PSBS transcript accumulation while inhibiting LHCSR1 accumulation. Our work emphasizes the importance of CO 2 in regulating photoprotection and the CCM, demonstrating that the impact of light on photoprotection is often indirect and reflects intracellular CO 2 levels

    Light-independent regulation of algal photoprotection by CO2 availability

    No full text
    Photosynthetic algae have evolved to survive in suboptimal light and CO2 conditions. Here, the authors show that depletion of CO2 can drive photoprotection and carbon acquisition even in the absence of light, that was previously believed to be indispensable for the activation of these processes
    corecore