10 research outputs found

    The VMC Survey - XXXVII. Pulsation periods of dust-enshrouded AGB stars in the Magellanic Clouds

    Get PDF
    Context. Variability is a key property of stars on the asymptotic giant branch (AGB). Their pulsation period is related to the luminosity and mass-loss rate of the star. Long-period variables (LPVs) and Mira variables are the most prominent of all types of variability of evolved stars. The reddest, most obscured AGB stars are too faint in the optical and have eluded large variability surveys. Aims. We obtained a sample of LPVs by analysing K-band light curves (LCs) of a large number of sources in the direction of the Magellanic Clouds with the colours expected for red AGB stars ((J − K) > 3 mag or equivalent in other colour combinations). Methods. Selection criteria were derived based on colour-colour and colour-magnitude diagrams from the combination of the VISTA Magellanic Cloud (VMC) survey, Spitzer IRAC and AllWISE data. After eliminating LPVs with known periods shorter than 450 days, a sample of 1299 candidate obscured AGB stars was selected. K-band LCs were constructed by combining the epoch photometry available in the VMC survey with literature data, were analysed for variability, and fitted with a single period sine curve to derive mean magnitudes, amplitudes, and periods. A subset of 254 stars are either new variables, known variables where the period we find is better determined than the literature value, or variables with periods longer than 1000 days. The spectral energy distributions (SEDs) of these stars were fitted to a large number of templates. For this purpose the SEDs and Spitzer IRS spectra of some non-AGB stars (Be stars, HII regions and young stellar objects – YSOs) were also fitted to have templates of the most likely contaminants in the sample. Results. A sample of 217 likely LPVs is found. Thirty-four stars have periods longer than 1000 days, although some of them have alternative shorter periods. The longest period of a known Mira in the Magellanic Clouds from Optical Gravitational Lensing Experiment data (with P = 1810 d) is derived to have a period of 2075 d based on its infrared LC. Two stars are found to have longer periods, but both have lower luminosities and smaller pulsation amplitudes than expected for Miras. Mass-loss rates and luminosities are estimated from the template fitting. Period-luminosity relations are presented for carbon (C-) and oxygen (O-) rich Miras that appear to be extensions of relations derived in the literature for shorter periods. The fit for the C stars is particularly well defined (with 182 objects) and reads Mbol = (−2.27 ± 0.20) ⋅ log P + (1.45 ± 0.54) mag with an rms of 0.41 mag. Thirty-four stars show pulsation properties typical of Miras while the SEDs indicate that they are not. Overall, the results of the LC fitting are presented for over 200 stars that are associated with YSOs

    The VMC survey XXVIII. Improved measurements of the proper motion of the Galactic globular cluster 47 Tucanae

    Get PDF
    We use deep multi-epoch point-spread function (PSF) photometry taken with the Visible and Infrared Survey Telescope for Astronomy (VISTA) to measure and analyze the proper motions of stars within the Galactic globular cluster 47 Tucanae (47 Tuc, NGC 104). The observations are part of the ongoing near-infrared VISTA survey of the Magellanic Cloud system (VMC). The data analyzed in this study correspond to one VMC tile, which covers a total sky area of 1.77 deg(2). Absolute proper motions with respect to similar to 9070 background galaxies are calculated from a linear regression model applied to the positions of stars in 11 epochs in the K-s filter. The data extend over a total time baseline of about 17 months. We found an overall median proper motion of the stars within 47 Tuc of (mu alpha cos(delta), mu(delta)) = (+5.89 +/- 0.02 (statistical) +/- 0.13 (systematic), -2.14 +/- 0.02 (statistical) +/- 0.08 (systematic)) mas yr(-1), based on the measurements of similar to 35 000 individual sources between 5’ and 42’ from the cluster center. We compared our result to the proper motions from the newest US Naval Observatory CCD Astrograph Catalog (UCAC5), which includes data from the Gaia data release 1. Selecting cluster members (similar to 2700 stars), we found a median proper motion of (mu(alpha)cos(delta), mu(delta)) = (+5.30 +/- 0.03 (statistical) +/- 0.70 (systematic), -2.70 +/- 0.03 (statistical) +/- 0.70 (systematic)) mas yr(-1). Comparing the results with measurements in the literature, we found that the values derived from the VMC data are consistent with the UCAC5 result, and are close to measurements obtained using the Hubble Space Telescope. We combined our proper motion results with radial velocity measurements from the literature and reconstructed the orbit of 47 Tuc, finding that the cluster is on an orbit with a low ellipticity and is confined within the inner similar to 7.5 kpc of the Galaxy. We show that the use of an increased time baseline in combination with PSF-determined stellar centroids in crowded regions significantly improves the accuracy of the method. In future works, we will apply the methods described here to more VMC tiles to study in detail the kinematics of the Magellanic Clouds

    The VMC Survey. XXXII. Pre-main-sequence populations in the Large Magellanic Cloud

    Get PDF
    Context Detailed studies of intermediate- and low-mass pre-main-sequence (PMS) stars outside the Galaxy have so far been conducted only for small targeted regions harbouring known star formation complexes. The VISTA Survey of the Magellanic Clouds (VMC) provides an opportunity to study PMS populations down to solar masses on a galaxy-wide scale. Aims Our goal is to use near-infrared data from the VMC survey to identify and characterise PMS populations down to ∼ 1 M� across the Magellanic Clouds. We present our colour−magnitude diagram method, and apply it to a ∼ 1.5 deg2 pilot field located in the Large Magellanic Cloud. Methods The pilot field is divided into equal-size grid elements. We compare the stellar population in every element with the population in nearby control fields by creating Ks/(Y−Ks) Hess diagrams; the observed density excesses over the local field population are used to classify the stellar populations. Results Our analysis recovers all known star formation complexes in this pilot field (N 44, N 51, N 148, and N 138) and for the first time reveals their true spatial extent. In total, around 2260 PMS candidates with ages . 10 Myr are found in the pilot field. PMS structures, identified as areas with a significant density excess of PMS candidates, display a power-law distribution of the number of members with a slope of −0.86 ± 0.12. We find a clustering of the young stellar populations along ridges and filaments where dust emission in the far-infrared (FIR) (70 µm – 500 µm) is bright. Regions with young populations lacking massive stars show a lower degree of clustering and are usually located in the outskirts of the star formation complexes. At short FIR wavelengths (70 µm, 100 µm) we report a strong dust emission increase in regions hosting young massive stars, which is less pronounced in regions populated only by less massive (. 4 M�) PMS stars

    X-shooter survey of young intermediate-mass stars – I. Stellar characterization and disc evolution

    Get PDF
    Intermediate-mass stars (IMSs) represent the link between low-mass and high-mass stars, and cover a key mass range for giant planet formation. In this paper, we present a spectroscopic survey of 241 young IMS candidates with IR-excess, the most complete unbiased sample to date within 300 pc. We combined VLT/X-Shooter spectra with BVR photometric observations and Gaia DR3 distances to estimate fundamental stellar parameters such as Teff, mass, radius, age, and luminosity. We further selected those stars within the intermediate-mass range 1.5 ≤ M⋆/M⊙ ≤ 3.5, and discarded old contaminants. We used 2MASS and WISE photometry to study the IR-excesses of the sample, finding 92 previously unidentified stars with IR-excess. We classified this sample into ‘protoplanetary’, ‘hybrid candidates’, and ‘debris’ discs based on their observed fractional excess at 12 μm, finding a new population of 17 hybrid disc candidates. We studied inner disc dispersal time-scales for λ<10μm and found very different trends for IMSs and low-mass stars (LMSs). IMSs show excesses dropping fast during the first 6 Myr independently of the wavelength, while LMSs show consistently lower fractions of excess at the shortest wavelengths, and increasingly higher fractions for longer wavelengths with slower dispersal rates. In conclusion, this study demonstrates empirically that IMSs dissipate their inner discs very differently than LMSs, providing a possible explanation for the lack of short period planets around IMSs

    Planet formation in intermediate-separation binary systems

    Get PDF
    ABSTRACT We report the first characterization of the individual discs in the intermediate-separation binary systems KK Oph and HD 144668 at millimetre wavelengths. In both systems, the circumprimary and the circumsecondary discs are detected in the millimetre continuum emission, but not in 13CO nor C18O lines. Even though the disc structure is only marginally resolved, we find indications of large-scale asymmetries in the outer regions of the primary discs, most likely due to perturbation by the companion. The derived dust masses are firmly above debris disc level for all stars. The primaries have about three times more dust in their discs than the secondaries. In the case of HD 144668, the opacity spectral index of the primary and secondary differ by a large margin of 0.69, which may be a consequence of the secondary disc being more compact. Upper limits on the gas masses imply less than 0.1 Mjup in any of these discs, meaning that giant planets can no longer form in them. Considering that there have been no massive gas discs identified to date in intermediate-separation binaries (i.e. binaries at a few hundred au separation), this opens space for speculation whether their binarity causes the removal of gas, with tidal interaction truncating the discs and hence shortening the accretion time-scale. More systematic studies in this respect are sorely needed.</jats:p

    First detection of a disk free of volatile elements around a young A-type star: A possible sign of collisions between rocky planets

    Get PDF
    Aims. We present the first detailed analysis of the astrophysical parameters of the poorly studied Sco-Cen member HD 152384 and its circumstellar environment. Methods. We analyse newly obtained optical-near-IR X-shooter spectra, as well as archival TESS data, of HD 152384. In addition, we use literature photometric data to construct a detailed spectral energy distribution (SED) of the star. Results. The photospheric absorption lines in the spectrum of HD 152384 are characteristic of an A0 V star, for which we derive a stellar mass of 2.1 ± 0.1 M⊙ and a stellar age > 4.5 Myr. Superimposed on the photospheric absorption, the optical spectrum also displays double-peaked emission lines of Ca II, Fe I, Mg I, and Si I, typical of circumstellar disks. Notably, all hydrogen and helium lines appear strictly in absorption. A toy model shows that the observed emission line profiles can be reproduced by emission from a compact (radius < 0.3 au) disk seen at an inclination of ∼24°. Further evidence for the presence of circumstellar material comes from the detection of a moderate IR excess in the SED, similar to those found in extreme debris disk systems. Conclusions. We conclude that HD 152384 is surrounded by a tenuous circumstellar disk that, although rich in refractory elements, is highly depleted of volatile elements. To the best of our knowledge, such a disk is unique among young stars. However, it is reminiscent of the disks seen in some white dwarfs, which have been attributed to the disruption of rocky planets. We suggest that the disk around HD 152384 may have a similar origin and may be due to collisions in a newly formed planetary system

    PENELLOPE: III. the peculiar accretion variability of XX Cha and its impact on the observed spread of accretion rates

    No full text
    The processes regulating protoplanetary disk evolution are constrained by studying how mass accretion rates scale with stellar and disk properties. The spread in these relations can be used as a constraint to the models of disk evolution, but only if the impact of accretion variability is correctly accounted for. While the effect of variability might be substantial in the embedded phases of star formation, it is often considered limited at later stages. Here we report on the observed large variation in the accretion rate for one target, XX Cha, and we discuss the impact on population studies of classical T Tauri stars. The mass accretion rate determined by fitting the UV-to-near-infrared spectrum in recent X-shooter observations is compared with the one measured with the same instrument 11 years before. XX Cha displays an accretion variability of almost 2 dex between 2010 and 2021. Although the timescales on which this variability happens are uncertain, XX Cha displays an extreme accretion variability for a classical T Tauri star. If such behavior is common among classical T Tauri stars, possibly on longer timescales than previously probed, it could be relevant for discussing the disk evolution models constrained by the observed spread in accretion rates. Finally, we remark that previous studies of accretion variability based on spectral lines may have underestimated the variability of some targets
    corecore