21 research outputs found

    Origin of Chlorophyll Fluorescence in Plants at 55–75°C ¶

    Full text link
    The origin of heat-induced chlorophyll fluorescence rise that appears at about 55–60°C during linear heating of leaves, chloroplasts or thylakoids (especially with a reduced content of grana thylakoids) was studied. This fluorescence rise was earlier attributed to photosystem I (PSI) emission. Our data show that the fluorescence rise originates from chlorophyll a (Chl a ) molecules released from chlorophyll-containing protein complexes denaturing at 55–60°C. This conclusion results mainly from Chl a fluorescence lifetime measurements with barley leaves of different Chl a content and absorption and emission spectra measurements with barley leaves preheated to selected temperatures. These data, supported by measurements of liposomes with different Chl a /lipid ratios, suggest that the released Chl a is dissolved in lipids of thylakoid membranes and that with increasing Chl a content in the lipid phase, the released Chl a tends to form low-fluorescing aggregates. This is probably the reason for the suppressed fluorescence rise at 55–60°C and the decreasing fluorescence course at 60–75°C, which are observable during linear heating of plant material with a high Chl a /lipid ratio ( e.g. green leaves, grana thylakoids, isolated PSII particles).Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/74574/1/0031-8655_2003_0770068OOCFIP2.0.CO2.pd

    Non-invasive monitoring of hydraulic surge propagation in a wounded tobacco plant

    No full text
    Abstract Background When a plant is wounded, a rapid hydraulic surge, acting probably as a systemic signal, spreads from the site of injury throughout the plant and leads to small transient deformation of tissues. So far, the propagation of hydraulic surge has been monitored by contact and thus potentially invasive methods. Results Here we present a non-invasive optical method, which allows simultaneous monitoring of micrometric shift of two opposite stem margins. The usefulness of this method was demonstrated by the measurement of the hydraulic surge propagation in a tobacco (Nicotiana tabacum (L.) cv. Samsun) after burning of its upper leaf. We have observed transient narrowing the stem below the burned leaf, which started within a few minutes after local burning. The comparison of the shift of the stem margin following vascular trace of the burned leaf and the margin on the opposite side of the stem has revealed that the stem deformation is highly asymmetric. Conclusions This optical method represents a novel tool to investigate the mechanism of systemic response of plants to local damage. Our results points out the complexity of the relationship between hydraulic surge propagation and stem deformation

    Organization of Plant Photosystem II and Photosystem I Supercomplexes

    No full text
    In nature, plants are continuously exposed to varying environmental conditions. They have developed a wide range of adaptive mechanisms, which ensure their survival and maintenance of stable photosynthetic performance. Photosynthesis is delicately regulated at the level of the thylakoid membrane of chloroplasts and the regulatory mechanisms include a reversible formation of a large variety of specific protein-protein complexes, supercomplexes or even larger assemblies known as megacomplexes. Revealing their structures is crucial for better understanding of their function and relevance in photosynthesis. Here we focus our attention on the isolation and a structural characterization of various large protein supercomplexes and megacomplexes, which involve Photosystem II and Photosystem I, the key constituents of photosynthetic apparatus. The photosystems are often attached to other protein complexes in thylakoid membranes such as light harvesting complexes, cytochrome b6f complex, and NAD(P)H dehydrogenase. Structural models of individual supercomplexes and megacomplexes provide essential details of their architecture, which allow us to discuss their function as well as physiological significance.</p

    Structural variability of plant photosystem II megacomplexes in thylakoid membranes

    Get PDF
    Plant photosystem II (PSII) is organized into large supercomplexes with variable amount of membrane-bound light-harvesting proteins (LHCII). The largest stable form of the PSII supercomplex involves four LHCII trimers, which are specifically connected to the PSII core dimer via monomeric antenna proteins. The PSII supercomplexes can further interact in thylakoid membrane, forming PSII megacomplexes. So far, only megacomplexes consisting of two PSII supercomplexes associated in parallel have been observed. Here we show that the forms of PSII megacomplexes can be much more variable. We performed single particle electron microscopy (EM) analysis of PSII megacomplexes isolated from Arabidopsis thaliana using clear-native polyacrylamide gel electrophoresis. Extensive image analysis of a large data set revealed that besides the known PSII megacomplexes, there are distinct groups of megacomplexes with non-parallel association of supercomplexes. In some of them, we have found additional LHCII trimers, which appear to stabilize the non-parallel assemblies. We also performed EM analysis of the PSII supercomplexes on the level of whole grana membranes and successfully identified several types of megacomplexes, including those with non-parallel supercomplexes, which strongly supports their natural origin. Our data demonstrate a remarkable ability of plant PSII to form various larger assemblies, which may control photochemical utilization of absorbed light energy in plants in changing environment. This article is protected by copyright. All rights reserved

    MOESM1 of Non-invasive monitoring of hydraulic surge propagation in a wounded tobacco plant

    No full text
    Additional file 1. Description and algorithm of the software for position determination of the second dark fringe

    Organization of Plant Photosystem II and Photosystem I Supercomplexes

    No full text
    In nature, plants are continuously exposed to varying environmental conditions. They have developed a wide range of adaptive mechanisms, which ensure their survival and maintenance of stable photosynthetic performance. Photosynthesis is delicately regulated at the level of the thylakoid membrane of chloroplasts and the regulatory mechanisms include a reversible formation of a large variety of specific protein-protein complexes, supercomplexes or even larger assemblies known as megacomplexes. Revealing their structures is crucial for better understanding of their function and relevance in photosynthesis. Here we focus our attention on the isolation and a structural characterization of various large protein supercomplexes and megacomplexes, which involve Photosystem II and Photosystem I, the key constituents of photosynthetic apparatus. The photosystems are often attached to other protein complexes in thylakoid membranes such as light harvesting complexes, cytochrome b6f complex, and NAD(P)H dehydrogenase. Structural models of individual supercomplexes and megacomplexes provide essential details of their architecture, which allow us to discuss their function as well as physiological significance

    Structural characterization of a plant photosystem I and NAD(P)H dehydrogenase supercomplex

    Get PDF
    Cyclic electron transport (CET) around photosystem I (PSI) plays an important role in balancing the ATP/NADPH ratio and the photoprotection of plants. The NAD(P)H dehydrogenase complex (NDH) has a key function in one of the CET pathways. Current knowledge indicates that, in order to fulfill its role in CET, the NDH complex needs to be associated with PSI; however, until now there has been no direct structural information about such a supercomplex. Here we present structural data obtained for a plant PSI–NDH supercomplex. Electron microscopy analysis revealed that in this supercomplex two copies of PSI are attached to one NDH complex. A constructed pseudo-atomic model indicates asymmetric binding of two PSI complexes to NDH and suggests that the low-abundant Lhca5 and Lhca6 subunits mediate the binding of one of the PSI complexes to NDH. On the basis of our structural data, we propose a model of electron transport in the PSI–NDH supercomplex in which the association of PSI to NDH seems to be important for efficient trapping of reduced ferredoxin by NDH.
    corecore