10 research outputs found

    Anti-biofilm Properties of Bacterial Di-Rhamnolipids and Their Semi-Synthetic Amide Derivatives

    Get PDF
    A new strain, namely Lysinibacillus sp. BV152.1 was isolated from the rhizosphere of ground ivy (Glechoma hederacea L.) producing metabolites with potent ability to inhibit biofilm formation of an important human pathogens Pseudomonas aeruginosa PAO1, Staphylococcus aureus, and Serratia marcescens. Structural characterization revealed di-rhamnolipids mixture containing rhamnose (Rha)-Rha-C10-C10, Rha-Rha-C8-C10, and Rha-Rha-C10-C12 in the ratio 7: 2: 1 as the active principle. Purified di-rhamnolipids, as well as commercially available di-rhamnolipids (Rha-Rha-C10-C10, 93%) were used as the substrate for the chemical derivatization for the first time, yielding three semisynthetic amide derivatives, benzyl-, piperidine-, and morpholine. A comparative study of the anti-biofilm, antibacterial and cytotoxic properties revealed that di-Rha from Lysinibacillus sp. BV152.1 were more potent in biofilm inhibition, both cell adhesion and biofilm maturation, than commercial di-rhamnolipids inhibiting 50% of P. aeruginosa PAO1 biofilm formation at 50 mu g mL(-1) and 75 mu g mL(-1), respectively. None of the dirhamnolipids exhibited antimicrobial properties at concentrations of up to 500 mu g mL(-1). Amide derivatization improved inhibition of biofilm formation and dispersion activities of di-rhamnolipids from both sources, with morpholine derivative being the most active causing more than 80% biofilm inhibition at concentrations 100 mu g mL(-1). Semisynthetic amide derivatives showed increased antibacterial activity against S. aureus, and also showed higher cytotoxicity. Therefore, described di-rhamnolipids are potent anti-biofilm agents and the described approach can be seen as viable approach in reaching new rhamnolipid based derivatives with tailored biological properties

    Synthesis, structural characterization and antimicrobial activity of silver(I) complexes with 1-benzyl-1H-tetrazoles

    Get PDF
    Herein, we report the synthesis and structural characteristics of three tetrazole-containing compounds, 1-benzyl-1H-tetrazole (bntz), 1-benzyl-1H-tetrazol-5-amine (bntza) and 1-(4-methoxybenzyl)-1H-tetrazol-5-amine (mbntza) and the corresponding silver(I) complexes of the general formula [Ag(NO3-O)(L-N4)(2)](n), L = bntz (1), bntza (2) and mbntza (3). Silver(I) complexes 1-3 and 1-benzyl-1H-tetrazoles have been studied in detail by NMR, IR and UV-Vis spectroscopic methods and the structures of 1 and 2 have been determined by single-crystal X-ray diffraction analysis. The results of these analyses revealed a monodentate coordination of the ligands to Ag(I) ion via the N4 tetrazole nitrogen. The antimicrobial potential of silver(I) complexes 1-3 was evaluated against the broad panel of Gram-positive and Gram-negative bacteria and fungi, displaying their remarkable inhibiting activity with MIC (minimal inhibitory concentration) values in the range 2-8 and 0.16-1.25 mu g/mL (3.8-16.3 and 0.31-2.15 mu M), respectively. On the other hand, 1-benzyl-1H-tetrazoles used for the synthesis of the silver(I) complexes were not active against the investigated strains, suggesting that the activity of the complexes originates from the Ag(I) ion exclusively. Moreover, silver(I) complexes 1-3 have good therapeutic potential, which can be deduced from their moderate cytotoxicity on the human fibroblast cell line MRC5, with IC50 values falling in the range 30-60 mu g/mL (57.7-103.4 mu M).Related to published version: [https://imagine.imgge.bg.ac.rs/handle/123456789/1144]This is the peer-reviewed version of the article: Andrejević, T. P., Nikolić, A. M., Glišić, B., Wadepohl, H., Vojnović, S., Zlatović, M., Petković, M., Nikodinović-Runić, J., Opsenica, I. M., & Djuran, M. (2018). Synthesis, structural characterization and antimicrobial activity of silver(I) complexes with 1-benzyl-1H-tetrazoles. Polyhedron, 154, 325–333. [https://doi.org/10.1016/j.poly.2018.08.001

    The impact of puffball autolysis on selected chemical and biological properties: puffball extracts as potential ingredients of skin-care products

    Get PDF
    Puffballs are fungi that produce globose fruiting bodies that undergo autolysis, transforming their insides into a spore bearing, powdery mass. Mature fruiting bodies are traditionally used to treat open skin wounds. In this study, methanol extracts of two puffball species, Handkea excipuliformis and Vascellum pratense, were examined and compared in order to provide insight into the changes these mushrooms undergo during maturation, with respect to their potential use in skin care and wound treatment. Some compounds involved in skin care and regeneration were quantified, and it was found that maturation increases the concentrations of almost all of these compounds. Antioxidant activity was also more pronounced in mature fruiting body extracts, which was in correlation with the higher content of antioxidants. Tyrosinase inhibition was vastly improved with autolysis, correlating with the higher phenolic content in mature fruiting body extracts. Antimicrobial activity was negatively affected by autolysis in the case of H. excipuliformis, whereas autolysis had little effect on the antimicrobial activity of V. pratense. Autolysis generally improved the biological activity and increased the concentrations of compounds involved in skin care, which justifies the traditional use of puffballs and makes them good candidates for various potential cosmetic and medicinal skin-care products

    Streptomyces sp JS520 produces exceptionally high quantities of undecylprodigiosin with antibacterial, antioxidative, and UV-protective properties

    No full text
    A Gram-positive, red-pigment-producing bacterial strain, designated JS520 was isolated from the pristine sediment from the cave on mountain Miroc in Serbia. Strain was confirmed to belong to Streptomyces genus based on phenotypic and genetic analysis. Streptomyces sp. JS520 has the ability to produce exceptionally high amounts of deep red pigment into both solid and liquid media. Liquid chromatography and mass spectroscopy of the purified pigments revealed the major component to be undecylprodigiosin (93 %) with minor component being oxidatively cyclized derivative. The pigment production was affected by medium composition, temperature, pH, and the aeration rate. By medium optimization, yields of undecylprodigiosin of 138 mg l(-1) were achieved, what is the highest level of undecylprodigiosin production reported for the members of Gram-positive Streptomyces genus. Purified pigment had antimicrobial properties against bacterial Bacillus and Micrococcus species (50 mu g ml(-1)) and against Candida albicans species (100-200 mu g ml(-1) range). The ability to affect auto-oxidation of the linoleic acid was demonstrated for the purified undecylprodigiosin, suggesting antioxidative properties of this pigment. Multiple ecophysiological roles of the pigment were revealed by comparing cultures grown under pigment-producing and pigment-nonproducing conditions. Cells grown under undecylprodigiosin-producing conditions could tolerate presence of hydrogen peroxide exhibiting three times smaller zones of inhibition at 100 mM H2O2. Undecylprodigiosin-producing cells were also less susceptible to tetracycline, kanamycin, chloramphenicol, and 8-hydroxyquinoline. While the growth of the cells not producing pigment was completely inhibited by 15 min of exposure to ultraviolet light (254 nm), cells producing undecylprodigiosin and cells supplied with purified pigment in vitro showed survival rates at 22 and 8 %, respectively

    Crude bacterial extracts of two new Streptomyces sp isolates as bio-colorants for textile dyeing

    No full text
    Renewed demand for incorporation of natural dyes (bio-colorants) in textile industry could be met through biotechnological production of bacterial pigments. Two new Streptomyces strains (NP2 and NP4) were isolated for the remarkable ability to produce diffusible deep blue and deep red pigment into fermentation medium. Crude mycelial extracts of both strains were used as bio-colorants in conventional textile dyeing procedures avoiding downstream purification procedures. The yields of bio-colorants obtained in this way were 62 and 84 mg per g of mycelia for Streptomyces sp. NP2 and Streptomyces sp. NP4, respectively. Through nuclear magnetic resonance analysis of crude extracts before and after dyeing procedures, it was shown that both extracts contained prodigiosin-like family of compounds that exhibited different dyeing capabilities towards different textile fibers. Polyamide and acrylic fibers were colored to the deepest shade, polyester and triacetate fibers to a noticeable, but much lower shade depth, while cotton and cellulosic fibers stained weakly. These results confirmed that crude bacterial extracts had the characteristics similar to those of ionic and disperse dyes, which was consistent with the identified polypyrrolic prodigiosin-like structures

    Synthesis, Anticancer Potential and Comprehensive Toxicity Studies of Novel Brominated Derivatives of Bacterial Biopigment Prodigiosin from Serratia marcescens ATCC 27117

    No full text
    Prodigiosins (prodiginines) are a class of bacterial secondary metabolites with remarkable biological activities and color. In this study, optimized production, purification, and characterization of prodigiosin (PG) from easily accessible Serratia marcescens ATCC 27117 strain has been achieved to levels of 14 mg/L of culture within 24 h. Furthermore, environmentally friendly bromination of produced PG was used to afford both novel mono- and dibrominated derivatives of PG. PG and its Br derivatives showed anticancer potential with IC50 values range 0.62-17.00 mu g/mL for all tested cancer cell lines and induction of apoptosis but low selectivity against healthy cell lines. All compounds did not affect Caenorhabditis elegans at concentrations up to 50 mu g/mL. However, an improved toxicity profile of Br derivatives in comparison to parent PG was observed in vivo using zebrafish (Danio rerio) model system, when 10 mu g/mL applied at 6 h post fertilization caused death rate of 100%, 30% and 0% by PG, PG-Br, and PG-Br-2,Br- respectively, which is a significant finding for further structural optimizations of bacterial prodigiosins. The drug-likeness of PG and its Br derivatives was examined, and the novel Br derivatives obey the Lipinski's "rule of five", with an exemption of being more lipophilic than PG, which still makes them good targets for further structural optimization

    Dinuclear silver(I) complexes with a pyridine-based macrocyclic type of ligand as antimicrobial agents against clinically relevant species: the influence of the counteranion on the structure diversification of the complexes

    No full text
    New dinuclear silver(i) complexes withN,N ',N '',N '''-tetrakis(2-pyridylmethyl)-1,4,8,11-tetraazacyclotetradecane (tpmc), [Ag-2(NO3)(tpmc)]NO3 center dot 1.7H(2)O (1), [Ag-2(CF3SO3)(2)(tpmc)] (2), and [Ag-2(tpmc)](BF4)(2) (3) were synthesized and characterized by NMR (H-1 and(13)C), IR and UV- Vis spectroscopy, cyclic voltammetry and molar conductivity measurements. The molecular structures of the complexes were determined by single-crystal X-ray diffraction analysis. The spectroscopic and crystallographic data showed that the structure of the complexes strongly depends on the nature of the counteranion of silver(i) salt used for their synthesis. The antimicrobial activity of complexes1-3was examined against Gram-positive and Gram-negative bacteria and different species of unicellular fungus Candida spp. The ability of these complexes to inhibit the formation of Candida biofilms and to eradicate the already formed biofilms was tested in the standard microtiter plate-based assay. In addition, a bioelectrochemical testing of the antimicrobial activity of complex 1 against early biofilm was also performed. The obtained results indicated that complexes 1-3 showed increased activity toward Gram-negative bacteria and Candida spp. and could inhibit the formation of biofilms. In most cases, these complexes had positive selectivity indices and showed similar or even better activity with respect to the clinically used silver(i) sulfadiazine (AgSD). The values of the binding constants for complexes 1-3 to bovine serum albumin (BSA) were found to be high enough to indicate their binding to this biomolecule, but not so high as to prevent their release upon arrival at the target site. Moreover, the positive values of partition coefficients for these complexes indicated their ability to be transported through the cell membrane. Once inside the cell, complexes 1-3 could induce the formation of the reactive oxygen species (ROS) in C. albicanscells and/or interact with DNA. Taken together, silver(i) complexes with the tpmc ligand could be considered as novel antimicrobial compounds with favourable pharmacological properties, being safer than AgSD
    corecore