3,328 research outputs found

    Testing for the association of the KIAA1109/Tenr/IL2/IL21 gene region with rheumatoid arthritis in a European family-based study

    Get PDF
    INTRODUCTION: A candidate gene approach, in a large case-control association study in the Dutch population, has shown that a 480 kb block on chromosome 4q27 encompassing KIAA1109/Tenr/IL2/IL21 genes is associated with rheumatoid arthritis. Compared with case-control association studies, family-based studies have the added advantage of controlling potential differences in population structure. Therefore, our aim was to test this association in populations of European origin by using a family-based approach. METHODS: A total of 1,302 West European white individuals from 434 trio families were genotyped for the rs4505848, rs11732095, rs6822844, rs4492018 and rs1398553 polymorphisms using the TaqMan Allelic discrimination assay (Applied Biosystems). The genetic association analyses for each SNP and haplotype were performed using the Transmission Disequilibrium Test and the genotype relative risk. RESULTS: We observed evidence for association of the heterozygous rs4505848-AG genotype with rheumatoid arthritis (P = 0.04); however, no significance was found after Bonferroni correction. In concordance with previous findings in the Dutch population, we observed a trend of undertransmission for the rs6822844-T allele and rs6822844-GT genotype to rheumatoid arthritis patients. We further investigated the five SNP haplotypes of the KIAA1109/Tenr/IL2/IL21 gene region. We observed, as described in the Dutch population, a nonsignificant undertransmission of the AATGG haplotype to rheumatoid arthritis patients. CONCLUSIONS: Using a family-based study, we have provided a trend for the association of the KIAA1109/Tenr/IL2/IL21 gene region with rheumatoid arthritis in populations of European descent. Nevertheless, we failed to replicate a significant association of this region in our rheumatoid arthritis family sample. Further investigation of this region, including detection and testing of all variants, is required to confirm rheumatoid arthritis association

    Rheumatoid arthritis seropositive for the rheumatoid factor is linked to the protein tyrosine phosphatase nonreceptor 22-620W allele

    Get PDF
    The protein tyrosine phosphatase nonreceptor type 22 (PTPN22) gene encodes for lymphoid tyrosine phosphatase LYP, involved in the negative regulation of early T-cell activation. An association has recently been reported between the PTPN22-620W functional allele and rheumatoid factor-positive (RF(+)) rheumatoid arthritis (RA), among other autoimmune diseases. Expected linkage proof for consistency cannot be definitely produced by an affected sib-pair (ASP) analysis. Our aim was therefore to search for linkage evidence with the transmission disequilibrium test. DNA from the French Caucasian population was available for two samples of 100 families with one RA patient and both parents, and for 88 RA index cases from RA ASP families. Genotyping was carried out by PCR-restriction fragment length polymorphism. The analysis was performed using the transmission disequilibrium test, genotype relative risk and ASP-based analysis. The transmission disequilibrium test of the PTPN22-620W allele revealed linkage and association for RF(+ )RA (61% of transmission, P = 0.037). The genotype relative risk showed the risk allele in 34% of RF(+ )RA patients and in 24% of controls derived from nontransmitted parental chromosomes (P = 0.047, odds ratio = 1.69, 95% confidence interval = 1.03–2.78). The ASP investigation showed no enriched risk allele in RA multiplex families, resulting in a lack of power of ASP analysis, explaining the published negative results. This study is the first to show linkage of PTPN22 to RF(+ )RA, consistent with PTPN22 as a new RA gene

    Association of MICA with rheumatoid arthritis independent of known HLA-DRB1 risk alleles in a family-based and a case control study

    Get PDF
    Introduction The gene MICA encodes the protein major histocompatibility complex class I polypeptide-related sequence A. It is expressed in synovium of patients with rheumatoid arthritis (RA) and its implication in autoimmunity is discussed. We analyzed the association of genetic variants of MICA with susceptibility to RA. Methods Initially, 300 French Caucasian individuals belonging to 100 RA trio families were studied. An additional 100 independent RA trio families and a German Caucasian case-control cohort (90/182 individuals) were available for replication. As MICA is situated in proximity to known risk alleles of the HLA-DRB1 locus, our analysis accounted for linkage disequilibrium either by analyzing the subgroup consisting of parents not carrying HLA-DRB1 risk alleles with transmission disequilibrium test (TDT) or by implementing a regression model including all available data. Analysis included a microsatellite polymorphism (GCT)n and single-nucleotide polymorphisms (SNPs) rs3763288 and rs1051794. Results In contrast to the other investigated polymorphisms, the non-synonymously coding SNP MICA-250 (rs1051794, Lys196Glu) was strongly associated in the first family cohort (TDT: P = 0.014; regression model: odds ratio [OR] 0.46, 95% confidence interval [CI] 0.25 to 0.82, P = 0.007). Although the replication family sample showed only a trend, combined family data remained consistent with the hypothesis of MICA-250 association independent from shared epitope (SE) alleles (TDT: P = 0.027; regression model: OR 0.56, 95% CI 0.38 to 0.83, P = 0.003). We also replicated the protective association of MICA-250A within a German Caucasian cohort (OR 0.31, 95% CI 0.1 to 0.7, P = 0.005; regression model: OR 0.6, 95% CI 0.37 to 0.96, P = 0.032). We showed complete linkage disequilibrium of MICA-250 (D' = 1, r2= 1) with the functional MICA variant rs1051792 (D' = 1, r2= 1). As rs1051792 confers differential allelic affinity of MICA to the receptor NKG2D, this provides a possible functional explanation for the observed association. Conclusions We present evidence for linkage and association of MICA-250 (rs1051794) with RA independent of known HLA-DRB1 risk alleles, suggesting MICA as an RA susceptibility gene. However, more studies within other populations are necessary to prove the general relevance of this polymorphism for RA

    Beyond the pseudo-time-dependent approach: chemical models of dense core precursors

    Full text link
    Context: Chemical models of dense cloud cores often utilize the so-called pseudo-time-dependent approximation, in which the physical conditions are held fixed and uniform as the chemistry occurs. In this approximation, the initial abundances chosen, which are totally atomic in nature except for molecular hydrogen, are artificial. A more detailed approach to the chemistry of dense cold cores should include the physical evolution during their early stages of formation. Aims: Our major goal is to investigate the initial synthesis of molecular ices and gas-phase molecules as cold molecular gas begins to form behind a shock in the diffuse interstellar medium. The abundances calculated as the conditions evolve can then be utilized as reasonable initial conditions for a theory of the chemistry of dense cores. Methods: Hydrodynamic shock-wave simulations of the early stages of cold core formation are used to determine the time-dependent physical conditions for a gas-grain chemical network. We follow the cold post-shock molecular evolution of ices and gas-phase molecules for a range of visual extinction up to AV ~ 3, which increases with time. At higher extinction, self-gravity becomes important. Results: As the newly condensed gas enters its cool post-shock phase, a large amount of CO is produced in the gas. As the CO forms, water ice is produced on grains, while accretion of CO produces CO ice. The production of CO2 ice from CO occurs via several surface mechanisms, while the production of CH4 ice is slowed by gas-phase conversion of C into CO.Comment: 9 pages, 3 figures, 2 table

    Cellular Adhesion Gene SELP Is Associated with Rheumatoid Arthritis and Displays Differential Allelic Expression.

    Get PDF
    In rheumatoid arthritis (RA), a key event is infiltration of inflammatory immune cells into the synovial lining, possibly aggravated by dysregulation of cellular adhesion molecules. Therefore, single nucleotide polymorphisms of 14 genes involved in cellular adhesion processes (CAST, ITGA4, ITGB1, ITGB2, PECAM1, PTEN, PTPN11, PTPRC, PXN, SELE, SELP, SRC, TYK2, and VCAM1) were analyzed for association with RA. Association analysis was performed consecutively in three European RA family sample groups (Nfamilies = 407). Additionally, we investigated differential allelic expression, a possible functional consequence of genetic variants. SELP (selectin P, CD62P) SNP-allele rs6136-T was associated with risk for RA in two RA family sample groups as well as in global analysis of all three groups (ptotal = 0.003). This allele was also expressed preferentially (p<10-6) with a two- fold average increase in regulated samples. Differential expression is supported by data from Genevar MuTHER (p1 = 0.004; p2 = 0.0177). Evidence for influence of rs6136 on transcription factor binding was also found in silico and in public datasets reporting in vitro data. In summary, we found SELP rs6136-T to be associated with RA and with increased expression of SELP mRNA. SELP is located on the surface of endothelial cells and crucial for recruitment, adhesion, and migration of inflammatory cells into the joint. Genetically determined increased SELP expression levels might thus be a novel additional risk factor for RA

    Polymorphism rs3087243 is associated with the occurrence of ankylosing spondylitis in the West Algerian population

    Get PDF
    Background: Numerous studies have shown that polymorphism rs231775 of the CTLA4 gene is strongly implicated in the development of ankylosing spondylitis (AS). Other polymorphisms of this gene are candidates that may have an additional effect in susceptibility to AS. For the first time, we searched for the association of rs3087243 polymorphism located in the 3'UTR region of the CTLA4 gene with the development of SA in the Algerian population. Methods: The study involved 200 subjects (80 AS patients recruited at the rheumatology service and 120 healthy individuals unrelated). Genotyping was performed by real-time PCR (Taqman®). Analysis of the results was carried out by IBM.SPSS.Statictis® software. Results: The distribution of allele frequencies showed a significant association between the GG genotype of the polymorphism rs3087243 and AS risk (OR= 1.77 [0.98-3.21], p=0.004). Conclusion: Our data would suggest that the 3'UTR region of the CTLA4 gene could have an impact on the development of SA in the West Algerian population. These results need to be confirmed on a larger sample

    Validation of the reshaped shared epitope HLA-DRB1 classification in rheumatoid arthritis

    Get PDF
    Recently, we proposed a classification of HLA-DRB1 alleles that reshapes the shared epitope hypothesis in rheumatoid arthritis (RA); according to this model, RA is associated with the RAA shared epitope sequence (72–74 positions) and the association is modulated by the amino acids at positions 70 and 71, resulting in six genotypes with different RA risks. This was the first model to take into account the association between the HLA-DRB1 gene and RA, and linkage data for that gene. In the present study we tested this classification for validity in an independent sample. A new sample of the same size and population (100 RA French Caucasian families) was genotyped for the HLA-DRB1 gene. The alleles were grouped as proposed in the new classification: S(1 )alleles for the sequences A-RAA or E-RAA; S(2 )for Q or D-K-RAA; S(3D )for D-R-RAA; S(3P )for Q or R-R-RAA; and X alleles for no RAA sequence. Transmission of the alleles was investigated. Genotype odds ratio (OR) calculations were performed through conditional logistic regression, and we tested the homogeneity of these ORs with those of the 100 first trio families (one case and both parents) previously reported. As previously observed, the S(2 )and S(3P )alleles were significantly over-transmitted and the S(1), S(3D )and X alleles were under-transmitted. The latter were grouped as L alleles, resulting in the same three-allele classification. The risk hierarchy of the six derived genotypes was the same: (by decreasing OR and with L/L being the reference genotype) S(2)/S(3P), S(2)/S(2), S(3P)/S(3P), S(2)/L and S(3P)/L. The homogeneity test between the ORs of the initial and the replication samples revealed no significant differences. The new classification was therefore considered validated, and both samples were pooled to provide improved estimates of RA risk genotypes from the highest (S(2)/S(3P )[OR 22.2, 95% confidence interval 9.9–49.7]) to the lowest (S(3P)/L [OR 4.4, 95% confidence interval 2.3–8.4])

    Kallmann Syndrome: Mutations in the Genes Encoding Prokineticin-2 and Prokineticin Receptor-2

    Get PDF
    Kallmann syndrome combines anosmia, related to defective olfactory bulb morphogenesis, and hypogonadism due to gonadotropin-releasing hormone deficiency. Loss-of-function mutations in KAL1 and FGFR1 underlie the X chromosome-linked form and an autosomal dominant form of the disease, respectively. Mutations in these genes, however, only account for approximately 20% of all Kallmann syndrome cases. In a cohort of 192 patients we took a candidate gene strategy and identified ten and four different point mutations in the genes encoding the G protein-coupled prokineticin receptor-2 (PROKR2) and one of its ligands, prokineticin-2 (PROK2), respectively. The mutations in PROK2 were detected in the heterozygous state, whereas PROKR2 mutations were found in the heterozygous, homozygous, or compound heterozygous state. In addition, one of the patients heterozygous for a PROKR2 mutation was also carrying a missense mutation in KAL1, thus indicating a possible digenic inheritance of the disease in this individual. These findings reveal that insufficient prokineticin-signaling through PROKR2 leads to abnormal development of the olfactory system and reproductive axis in man. They also shed new light on the complex genetic transmission of Kallmann syndrome
    corecore