7,015 research outputs found

    The measured compositions of Uranus and Neptune from their formation on the CO iceline

    Full text link
    The formation mechanisms of the ice giants Uranus and Neptune, and the origin of their elemental and isotopic compositions, have long been debated. The density of solids in the outer protosolar nebula is too low to explain their formation, and spectroscopic observations show that both planets are highly enriched in carbon, very poor in nitrogen, and the ices from which they originally formed might had deuterium-to-hydrogen ratios lower than the predicted cometary value, unexplained properties observed in no other planets. Here we show that all these properties can be explained naturally if Uranus and Neptune both formed at the carbon monoxide iceline. Due to the diffusive redistribution of vapors, this outer region of the protosolar nebula intrinsically has enough surface density to form both planets from carbon-rich solids but nitrogen-depleted gas, in abundances consistent with their observed values. Water rich interiors originating mostly from transformed CO ices reconcile the D/H value of Uranus and Neptune's building blocks with the cometary value. Finally, Our scenario generalizes a well known hypothesis that Jupiter formed on an iceline (water snowline) for the two ice giants, and might be a first step towards generalizing this mechanism for other giant planets.Comment: The Astrophysical Journal (in press), 8 pages, 5 figure

    Transient behavior of surface plasmon polaritons scattered at a subwavelength groove

    Get PDF
    We present a numerical study and analytical model of the optical near-field diffracted in the vicinity of subwavelength grooves milled in silver surfaces. The Green's tensor approach permits computation of the phase and amplitude dependence of the diffracted wave as a function of the groove geometry. It is shown that the field diffracted along the interface by the groove is equivalent to replacing the groove by an oscillating dipolar line source. An analytic expression is derived from the Green's function formalism, that reproduces well the asymptotic surface plasmon polariton (SPP) wave as well as the transient surface wave in the near-zone close to the groove. The agreement between this model and the full simulation is very good, showing that the transient "near-zone" regime does not depend on the precise shape of the groove. Finally, it is shown that a composite diffractive evanescent wave model that includes the asymptotic SPP can describe the wavelength evolution in this transient near-zone. Such a semi-analytical model may be useful for the design and optimization of more elaborate photonic circuits whose behavior in large part will be controlled by surface waves.Comment: 12 pages, 10 figure

    Mediterranean rural territories

    Get PDF
    International audienceDespite the radical differences – related to different demographic, economic and social dynamics- between the north and the south of the Mediterranean region as regards the evolution of rural areas, in recent years a strong convergence has paradoxically appeared concerning the need for a territorial approach to rural development policies in the whole region. There is extensive literature, reviewed briefly in this article, on the scientific grounds legitimising this territorial approach. Recent experiences, both in the North and in the South, show that local community organisations have a key role to play in the effective promotion of rural development for the benefit of the poorest and weakest. However, many obstacles need to be overcome for that role to be effective, both in the North and in the South. Possible failures would greatly jeopardise the current and desirable future efforts that should be undertaken to face the difficult conditions of the poorest populations in the Southern and Eastern countries of the region.Malgré de profondes différences entre le nord et le sud de la région méditerranéenne quant à l’évolution des zones rurales- différences liées d’abord à des dynamiques démographiques, économiques et sociales contrastées, il est paradoxal qu’une forte convergence se soit dégagée au cours des années récentes sur la nécessité d’une approche territoriale des politiques de développement rural dans toute la région. Un ensemble important de travaux scientifiques, brièvement évoqués dans cet article, légitiment cette approche territoriale. Les expériences récentes, au Nord et au Sud, montrent que les organisations communautaires au niveau local ont un rôle clé à jouer dans la promotion d’un développement rural au bénéfice des plus pauvres et des plus faibles. Mais de nombreux obstacles doivent être surmontés, tant au Nord qu’au Sud, pour que ce rôle potentiel puisse être effectif. Ne pas le faire mettrait en péril les efforts actuels ou à venir pour améliorer la situation des plus pauvres dans les pays du Sud et de l’Est de la région

    Influence of the C/O ratio on titanium and vanadium oxides in protoplanetary disks

    Full text link
    Context. The observation of carbon-rich disks have motivated several studies questioning the influence of the C/O ratio on their gas phase composition in order to establish the connection between the metallicity of hot-Jupiters and that of their parent stars. Aims. We to propose a method that allows the characterization of the adopted C/O ratio in protoplanetary disks independently from the determination of the host star composition. Titanium and vanadium chemistries are investigated because they are strong optical absorbers and also because their oxides are known to be sensitive to the C/O ratio in some exoplanet atmospheres. Methods. We use a commercial package based on the Gibbs energy minimization technique to compute the titanium and vanadium equilibrium chemistries in protoplanetary disks for C/O ratios ranging from 0.05 to 10. Our calculations are performed for pressures ranging from 1e-6 to 1e-2 bar, and for temperatures ranging from 50 to 2000 K. Results. We find that the vanadium nitride/vanadium oxide and titanium hydride/titanium oxide gas phase ratios strongly depend on the C/O ratio in the hot parts of disks (T > 1000 K). Our calculations suggest that, in these regions, these ratios can be used as tracers of the C/O value in protoplanetary disks.Comment: Accepted for publication in A&

    Wind Channeling, Magnetospheres, And Spindown Of Magnetic Massive Stars

    Get PDF
    A subpopulation (~10%) of hot, luminous, massive stars have been revealed through spectropolarimetry to harbor strong (hundreds to tens of thousand Gauss), steady, large-scale (often significantly dipolar) magnetic fields. This review focuses on the role of such fields in channeling and trapping the radiatively driven wind of massive stars, including both in the strongly perturbed outflow from open field regions, and the wind-fed “magnetospheres” that develop from closed magnetic loops. For B-type stars with weak winds and moderately fast rotation, one finds “centrifugal magnetospheres”, in which rotational support allows magnetically trapped wind to accumulate to a large density, with quite distinctive observational signatures, e.g. in Balmer line emission. In contrast, more luminous O-type stars have generally been spun down by magnetic braking from angular momentum loss in their much stronger winds. The lack of centrifugal support means their closed loops form a “dynamical magnetosphere”, with trapped material falling back to the star on a dynamical timescale; nonetheless, the much stronger wind feeding leads to a circumstellar density that is still high enough to give substantial Balmer emission. Overall, this review describes MHD simulations and semi-analytic dynamical methods for modeling the magnetospheres, the magnetically channeled wind outflows, and the associated spin-down of these magnetic massive stars

    Conversion of terahertz wave polarization at the boundary of a layered superconductor due to the resonance excitation of oblique surface waves

    Full text link
    We predict a complete TM-TE transformation of the polarization of terahertz electromagnetic waves reflected from a strongly anisotropic boundary of a layered superconductor. We consider the case when the wave is incident on the superconductor from a dielectric prism separated from the sample by a thin vacuum gap. The physical origin of the predicted phenomenon is similar to the Wood anomalies known in optics, and is related to the resonance excitation of the oblique surface waves. We also discuss the dispersion relation for these waves, propagating along the boundary of the superconductor at some angle with respect to the anisotropy axis, as well as their excitation by the attenuated-total-reflection method.Comment: 4 pages, 5 figure

    An `Analytic Dynamical Magnetosphere' formalism for X-ray and optical emission from slowly rotating magnetic massive stars

    Get PDF
    Slowly rotating magnetic massive stars develop "dynamical magnetospheres" (DM's), characterized by trapping of stellar wind outflow in closed magnetic loops, shock heating from collision of the upflow from opposite loop footpoints, and subsequent gravitational infall of radiatively cooled material. In 2D and 3D magnetohydrodynamic (MHD) simulations the interplay among these three components is spatially complex and temporally variable, making it difficult to derive observational signatures and discern their overall scaling trends.Within a simplified, steady-state analysis based on overall conservation principles, we present here an "analytic dynamical magnetosphere" (ADM) model that provides explicit formulae for density, temperature and flow speed in each of these three components -- wind outflow, hot post-shock gas, and cooled inflow -- as a function of colatitude and radius within the closed (presumed dipole) field lines of the magnetosphere. We compare these scalings with time-averaged results from MHD simulations, and provide initial examples of application of this ADM model for deriving two key observational diagnostics, namely hydrogen H-alpha emission line profiles from the cooled infall, and X-ray emission from the hot post-shock gas. We conclude with a discussion of key issues and advantages in applying this ADM formalism toward derivation of a broader set of observational diagnostics and scaling trends for massive stars with such dynamical magnetospheres.Comment: 15 pages, 11 figures, accepted for MNRA
    • …
    corecore