18 research outputs found
Lipids or Proteins: Who Is Leading the Dance at Membrane Contact Sites?
Understanding the mode of action of membrane contact sites (MCSs) across eukaryotic organisms at the near-atomic level to infer function at the cellular and tissue levels is a challenge scientists are currently facing. These peculiar systems dedicated to inter-organellar communication are perfect examples of cellular processes where the interplay between lipids and proteins is critical. In this mini review, we underline the link between membrane lipid environment, the recruitment of proteins at specialized membrane domains and the function of MCSs. More precisely, we want to give insights on the crucial role of lipids in defining the specificity of plant endoplasmic reticulum (ER)-plasma membrane (PM) MCSs and we further propose approaches to study them at multiple scales. Our goal is not so much to go into detailed description of MCSs, as there are numerous focused reviews on the subject, but rather try to pinpoint the critical elements defining those structures and give an original point of view by considering the subject from a near-atomic angle with a focus on lipids. We review current knowledge as to how lipids can define MCS territories, play a role in the recruitment and function of the MCS-associated proteins and in turn, how the lipid environment can be modified by proteins
Lipids or Proteins: Who Is Leading the Dance at Membrane Contact Sites?
International audienceUnderstanding the mode of action of membrane contact sites (MCSs) across eukaryotic organisms at the near-atomic level to infer function at the cellular and tissue levels is a challenge scientists are currently facing. These peculiar systems dedicated to inter-organellar communication are perfect examples of cellular processes where the interplay between lipids and proteins is critical. In this mini review, we underline the link between membrane lipid environment, the recruitment of proteins at specialized membrane domains and the function of MCSs. More precisely, we want to give insights on the crucial role of lipids in defining the specificity of plant endoplasmic reticulum (ER)-plasma membrane (PM) MCSs and we further propose approaches to study them at multiple scales. Our goal is not so much to go into detailed description of MCSs, as there are numerous focused reviews on the subject, but rather try to pinpoint the critical elements defining those structures and give an original point of view by considering the subject from a near-atomic angle with a focus on lipids. We review current knowledge as to how lipids can define MCS territories, play a role in the recruitment and function of the MCS-associated proteins and in turn, how the lipid environment can be modified by proteins
Dare to change, the dynamics behind plasmodesmata-mediated cell-to-cell communication
Plasmodesmata pores control the entry and exit of molecules at cell-to-cell boundaries. Hundreds of pores perforate the plant cell wall, connecting cells together and establishing direct cytosolic and membrane continuity. This ability to connect cells in such a way is a hallmark of plant physiology and is thought to have allowed sessile multicellularity in Plantae kingdom. Indeed, plasmodesmata-mediated cell-to-cell signalling is fundamental to many plant-related processes. In fact, there are so many facets of plant biology under the control of plasmodesmata that it is hard to conceive how such tiny structures can do so much. While they provide ‘open doors’ between cells, they also need to guarantee cellular identities and territories by selectively transporting molecules. Although plasmodesmata operating mode remains difficult to grasp, little by little plant scientists are divulging their secrets. In this review, we highlight novel functions of cell-to-cell signalling and share recent insights into how plasmodesmata structural and molecular signatures confer functional specificity and plasticity to these unique cellular machines
Multiple C2 domains and transmembrane region proteins (MCTPs) tether membranes at plasmodesmata
In eukaryotes, membrane contact sites (MCS) allow direct communication between organelles. Plants have evolved a unique type of MCS, inside intercellular pores, the plasmodesmata, where endoplasmic reticulum (ER)–plasma membrane (PM) contacts coincide with regulation of cell‐to‐cell signalling. The molecular mechanism and function of membrane tethering within plasmodesmata remain unknown. Here, we show that the multiple C2 domains and transmembrane region protein (MCTP) family, key regulators of cell‐to‐cell signalling in plants, act as ER‐PM tethers specifically at plasmodesmata. We report that MCTPs are plasmodesmata proteins that insert into the ER via their transmembrane region while their C2 domains dock to the PM through interaction with anionic phospholipids. A Atmctp3/Atmctp4 loss of function mutant induces plant developmental defects, impaired plasmodesmata function and composition, while MCTP4 expression in a yeast Δtether mutant partially restores ER‐PM tethering. Our data suggest that MCTPs are unique membrane tethers controlling both ER‐PM contacts and cell‐to‐cell signalling
Multiple C2 domains and Transmembrane region Proteins (MCTPs) tether membranes at plasmodesmata
In eukaryotes, membrane contact sites (MCS) allow direct communication between organelles. Plants have evolved a unique type of MCS, inside intercellular pores, the plasmodesmata, where endoplasmic reticulum (ER)–plasma membrane (PM) contacts coincide with regulation of cell‐to‐cell signalling. The molecular mechanism and function of membrane tethering within plasmodesmata remain unknown. Here, we show that the multiple C2 domains and transmembrane region protein (MCTP) family, key regulators of cell‐to‐cell signalling in plants, act as ER‐PM tethers specifically at plasmodesmata. We report that MCTPs are plasmodesmata proteins that insert into the ER via their transmembrane region while their C2 domains dock to the PM through interaction with anionic phospholipids. A Atmctp3/Atmctp4 loss of function mutant induces plant developmental defects, impaired plasmodesmata function and composition, while MCTP4 expression in a yeast Δtether mutant partially restores ER‐PM tethering. Our data suggest that MCTPs are unique membrane tethers controlling both ER‐PM contacts and cell‐to‐cell signalling
Sphingolipid biosynthesis modulates plasmodesmal ultrastructure and phloem unloading.
During phloem unloading, multiple cell-to-cell transport events move organic substances to the root meristem. Although the primary unloading event from the sieve elements to the phloem pole pericycle has been characterized to some extent, little is known about post-sieve element unloading. Here, we report a novel gene, PHLOEM UNLOADING MODULATOR (PLM), in the absence of which plasmodesmata-mediated symplastic transport through the phloem pole pericycle-endodermis interface is specifically enhanced. Increased unloading is attributable to a defect in the formation of the endoplasmic reticulum-plasma membrane tethers during plasmodesmal morphogenesis, resulting in the majority of pores lacking a visible cytoplasmic sleeve. PLM encodes a putative enzyme required for the biosynthesis of sphingolipids with very-long-chain fatty acid. Taken together, our results indicate that post-sieve element unloading involves sphingolipid metabolism, which affects plasmodesmal ultrastructure. They also raise the question of how and why plasmodesmata with no cytoplasmic sleeve facilitate molecular trafficking.Finnish Centre of Excellence in Molecular Biology of Primary Producers (decision #271832)
Gatsby Foundation (GAT3395/PR3)
National Science Foundation Biotechnology and Biological Sciences Research Council grant (BB/N013158/1)
University of Helsinki (award 799992091)
ERC Advanced Investigator Grant SYMDEV (No. 323052
Plant plasmodesmata bridges form through ER-dependent incomplete cytokinesis
International audienceDiverging from conventional cell division models, plant cells undergo incomplete division to generate plasmodesmata communication bridges between daughter cells. While fundamental for plant multicellularity, the mechanisms governing bridge stabilization, as opposed to severing, remain unknown. We found that the endoplasmic reticulum (ER) is decisive in promoting incomplete cytokinesis by inhibiting local abscission events. ER tubes within contracting cell plate fenestrae create energy barriers preventing full closure. Contraction ceases upon encountering a metastable ER-plasma membrane tubular structure, leading to plasmodesmata formation. This process relies on the ER-tethers multiple C2 domains and transmembrane domain proteins 3, 4, and 6, which act as ER stabilizers, preserving ER position and integrity in nascent bridges. Our findings unveil the mechanisms through which plants undergo incomplete division to promote intercellular communication
Plant plasmodesmata bridges form through ER-dependent incomplete cytokinesis
International audienceDiverging from conventional cell division models, plant cells undergo incomplete division to generate plasmodesmata communication bridges between daughter cells. While fundamental for plant multicellularity, the mechanisms governing bridge stabilization, as opposed to severing, remain unknown. We found that the endoplasmic reticulum (ER) is decisive in promoting incomplete cytokinesis by inhibiting local abscission events. ER tubes within contracting cell plate fenestrae create energy barriers preventing full closure. Contraction ceases upon encountering a metastable ER-plasma membrane tubular structure, leading to plasmodesmata formation. This process relies on the ER-tethers multiple C2 domains and transmembrane domain proteins 3, 4, and 6, which act as ER stabilizers, preserving ER position and integrity in nascent bridges. Our findings unveil the mechanisms through which plants undergo incomplete division to promote intercellular communication