119 research outputs found

    Factor VIII:C concentrate purified from plasma using monoclonal antibodies: human studies

    Get PDF
    Conventional clotting factor concentrates have, until recently, been of intermediate purity, containing less than 1% of the coagulation factor, and greater than 99% extraneous plasma proteins such as fibrinogen, fibronectin, gamma globulins, and traces of many others. We report here the results of a new factor VIII concentrate that is purified from human plasma using a mouse monoclonal antibody to factor VIII:vWF in an affinity chromatography system. The resultant concentrate has an activity of between 3,000 and 5,000 U/mg protein before albumin is added as a stabilizer. Seven patients with severe hemophilia A and no inhibitor who were positive for antibody to human immunodeficiency virus (HIV) have been treated solely with this concentrate for over 24 months. Factor usage in these patients has ranged from 611 U/kg/yr to 2,022 U/kg/yr. These patients have infused approximately once per week on the average, most often for joint hemorrhages. The efficacy of the concentrate is excellent. No allergic reactions have occurred and no factor VIII antibodies have developed. In these seven patients mean CD4 counts stabilized (856 +/- 619 at screen v 778 +/- 686 at 24 months) and there was reversal of skin test anergy. In a comparison group on conventional intermediate purity concentrate chosen retrospectively decreases in mean CD4 cell counts similarly did not occur. However, the number of the comparison patients who were anergic increased over the course of the study. These observations indicate the possibility that more highly purified concentrates may stabilize immune function in HIV seropositive patients

    Evaluation of flu vaccination coverage among healthcare workers during a 3 years’ study period and attitude towards influenza and potential covid-19 vaccination in the context of the pandemic

    Get PDF
    (1) Background: vaccination of healthcare workers (HCWs) against seasonal influenza is considered the most effective way to protect HCWs, ensure patient’s safety and to maintain essential health care services during influenza epidemics. With the present study we aimed to evaluate the efficacy of incremental bundles of measures implemented during the last three flu campaigns and to assess the attitudes towards influenza vaccination and a potential vaccine against COVID-19 among HCWs, in a large university hospital in Pisa, Italy. (2) Methods: We described measures implemented during 2018/2019, 2019/2020 and 2020/2021 and assessed their impact on flu vaccine coverage (VC) among employees and residents in Pisa university hospital. We considered sex, profession and ward to investigate differences in uptake. In addition, in 2020 a survey was developed and distributed to all employees to evaluate flu and COVID-19 vaccines attitudes. (3) Results: during the 2018/19 and 2019/20 flu campaigns the overall VC rate among HCWs was, respectively, 10.2% and 11.9%. In 2020/21 the overall VC rate jumped to 39.3% (+230.6%). Results from the survey indicated a more positive attitude towards flu vaccine as compared to COVID-19 vaccines among the 10.6% of the staff members who responded to the survey. In addition, 70.97% of HCWs totally agreed that being vaccinated against influenza would be more important than the previous years because of COVID-19 emergency. (4) Conclusions: a significant increase in VC was observed in 2020/21, especially among those sub-groups with consistently lower uptake in previous years. The COVID-19 pandemic positively influenced flu vaccination uptake during the 2020/21 season

    The analysis of myotonia congenita mutations discloses functional clusters of amino acids within the CBS2 domain and the C-terminal peptide of the ClC-1 channel

    Get PDF
    Myotonia congenita (MC) is a skeletal-muscle hyperexcitability disorder caused by loss-of-function mutations in the ClC-1 chloride channel. Mutations are scattered over the entire sequence of the channel protein, with more than 30\ua0mutations located in the poorly characterized cytosolic C-terminal domain. In this study, we characterized, through patch clamp, seven ClC-1 mutations identified in patients affected by MC of various severities and located in the C-terminal region. The p.Val829Met, p.Thr832Ile, p.Val851Met, p.Gly859Val, and p.Leu861Pro mutations reside in the CBS2 domain, while p.Pro883Thr and p.Val947Glu are in the C-terminal peptide. We showed that the functional properties of mutant channels correlated with the clinical phenotypes of affected individuals. In addition, we defined clusters of ClC-1 mutations within CBS2 and C-terminal peptide subdomains that share the same functional defect: mutations between 829 and 835 residues and in residue 883 induced an alteration of voltage dependence, mutations between 851 and 859 residues, and in residue 947 induced a reduction of chloride currents, whereas mutations on 861 residue showed no obvious change in ClC-1 function. This study improves our understanding of the mechanisms underlying MC, sheds light on the role of the C-terminal region in ClC-1 function, and provides information to develop new antimyotonic drugs

    Analytical methods for describing charged particle dynamics in general focusing lattices using generalized Courant-Snyder theory

    Get PDF
    The dynamics of charged particles in general linear focusing lattices with quadrupole, skew-quadrupole, dipole, and solenoidal components, as well as torsion of the fiducial orbit and variation of beam energy is parametrized using a generalized Courant-Snyder (CS) theory, which extends the original CS theory for one degree of freedom to higher dimensions. The envelope function is generalized into an envelope matrix, and the phase advance is generalized into a 4D symplectic rotation, or a U(2) element. The 1D envelope equation, also known as the Ermakov-Milne-Pinney equation in quantum mechanics, is generalized to an envelope matrix equation in higher dimensions. Other components of the original CS theory, such as the transfer matrix, Twiss functions, and CS invariant (also known as the Lewis invariant) all have their counterparts, with remarkably similar expressions, in the generalized theory. The gauge group structure of the generalized theory is analyzed. By fixing the gauge freedom with a desired symmetry, the generalized CS parametrization assumes the form of the modified Iwasawa decomposition, whose importance in phase space optics and phase space quantum mechanics has been recently realized. This gauge fixing also symmetrizes the generalized envelope equation and expresses the theory using only the generalized Twiss function beta. The generalized phase advance completely determines the spectral and structural stability properties of a general focusing lattice. For structural stability, the generalized CS theory enables application of the Krein-Moser theory to greatly simplify the stability analysis. The generalized CS theory provides an effective tool to study coupled dynamics and to discover more optimized lattice designs in the larger parameter space of general focusing lattices.open3

    MicroRNAs: exploring a new dimension in the pathogenesis of kidney cancer

    Get PDF
    Renal cell carcinoma (RCC) is the most common neoplasm of the adult kidney. The role of the von-Hippel-Lindeau (VHL) tumour suppressor gene is well established in RCC with a loss of VHL protein leading to accumulated hypoxia-induced factor (HIF) and the subsequent transcriptional activation of multiple downstream targets. Recently, microRNAs (miRNAs) have been shown to be differentially expressed in RCC and their role in RCC pathogenesis is emerging. This month, in BMC Medicine, Gleadle and colleagues show that certain miRNAs are regulated by VHL in either a hypoxia-inducible factor (HIF)-dependent or HIF-independent manner in RCC. They also show that miRNA expression correlates with the survival of RCC patients

    Tumour suppressor microRNA-584 directly targets oncogene Rock-1 and decreases invasion ability in human clear cell renal cell carcinoma

    Get PDF
    BackgroundThe purpose of this study was to identify new tumour suppressor microRNAs (miRs) in clear cell renal cell carcinoma (ccRCC), carry out functional analysis of their suppressive role and identify their specific target genes.MethodsTo explore suppressor miRs in RCC, miR microarray and real-time PCR were performed using HK-2 and A-498 cells. Cell viability, invasion and wound healing assays were carried out for functional analysis after miR transfection. To determine target genes of miR, we used messenger RNA (mRNA) microarray and target scan algorithms to identify target oncogenes. A 3'UTR luciferase assay was also performed. Protein expression of target genes in ccRCC tissues was confirmed by immunohistochemistry and was compared with miR-584 expression in ccRCC tissues.ResultsExpression of miR-584 in RCC (A-498 and 769-P) cells was downregulated compared with HK-2 cells. Transfection of miR-584 dramatically decreased cell motility. The ROCK-1 mRNA was inhibited by miR-584 and predicted to be target gene. The miR-584 decreased 3'UTR luciferase activity of ROCK-1 and ROCK-1 protein expression. Low expression of miR-584 in ccRCC tissues was correlated with high expression of ROCK-1 protein. The knockdown of ROCK-1 by siRNA inhibited cell motility.ConclusionmiR-584 is a new tumour suppressor miR in ccRCC and inhibits cell motility through downregulation of ROCK-1

    An Advanced Electromagnetic Eigenmode Solver for Vacuum Electronics Devices -CTLSS ࣿ

    Get PDF
    Abstract The Cold-Test and Large-Signal Simulation code (CTLSS), a design tool for vacuum electronics devices, is presented. The prototype tool is a three-dimensional, frequencydomain cold-test code that operates on a rectangular structured grid. It uses a generalisation [1] of the JacobiDavidson algorithm [2] that has proven effective in solving for eigenmodes in problems having sharp-edged structures with materials having large dielectric constants and loss tangents as high as 100%. We present the CTLSS algorithm and code features that are useful for vacuum electronics design. Analysis of both closed cavities and periodic slow-wave structures are given. Tests indicate that the CTLSS algorithm can determine mode frequencies to well below 0.1% accuracy for all modes computed. A new formulation has been implemented to compute the complex axial wavenumber, k z , in a periodic waveguide, as the eigenvalue for a specified real frequency, and test results will be presented. This code is being extended to include an unstructured mesh for the conformal representation of structures using high order element

    Expression of miRNA-106b in conventional renal cell carcinoma is a potential marker for prediction of early metastasis after nephrectomy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MicroRNAs are endogenously expressed regulatory noncoding RNAs. Previous studies have shown altered expression levels of several microRNAs in renal cell carcinoma.</p> <p>Methods</p> <p>We examined the expression levels of selected microRNAs in 38 samples of conventional renal cell carcinoma (RCC) and 10 samples of non-tumoral renal parenchyma using TaqMan real-time PCR method.</p> <p>Results</p> <p>The expression levels of miRNA-155 (p < 0.0001), miRNA-210 (p < 0.0001), miRNA-106a (p < 0.0001) and miRNA-106b (p < 0.0001) were significantly over-expressed in tumor tissue, whereas the expression of miRNA-141 (p < 0.0001) and miRNA-200c (p < 0.0001) were significantly decreased in RCC samples. There were no significant differences between expression levels of miRNA-182 and miRNA-200b in tumor samples and renal parenchyma. Our data suggest that expression levels of miRNA-106b are significantly lower in tumors of patients who developed metastasis (p = 0.030) and miR-106b is a potential predictive marker of early metastasis after nephrectomy in RCC patients (long-rank p = 0.032).</p> <p>Conclusions</p> <p>We have confirmed previous observations obtained by miRNA microarray analysis using standardized real-time PCR method. For the first time, we have identified a prognostic significance of miRNA-106b, which, after validation on a larger group of patients, maybe useful as a promising biomarker in patients with RCC.</p

    Upper limb function in Duchenne muscular dystrophy: 24 month longitudinal data

    Get PDF
    The aim of the study was to establish 24 month changes in upper limb function using a revised version of the performance of upper limb test (PUL 2.0) in a large cohort of ambulant and non-ambulant boys with Duchenne muscular dystrophy and to identify possible trajectories of progression. Of the 187 patients studied, 87 were ambulant (age range: 7\u201315.8 years), and 90 non-ambulant (age range: 9.08\u201324.78). The total scores changed significantly over time (p&lt;0.001). Non-ambulant patients had lower total scores at baseline (mean 19.7) when compared to the ambulant ones (mean 38.4). They also had also a bigger decrease in total scores over 24 months compared to the ambulant boys (4.36 vs 2.07 points). Multivariate model analysis showed that the Performance of Upper Limb changes reflected the entry level and ambulation status, that were independently associated to the slope of Performance of Upper Limb changes. This information will be of help both in clinical practice and at the time of designing clinical trials
    corecore