13 research outputs found

    Corneal sensitivity is required for orientation in free-flying migratory bats

    Get PDF
    The exact anatomical location for an iron particle-based magnetic sense remains enigmatic in vertebrates. For mammals, findings from a cornea anaesthesia experiment in mole rats suggest that it carries the primary sensors for magnetoreception. Yet, this has never been tested in a free-ranging mammal. Here, we investigated whether intact corneal sensation is crucial for navigation in migrating Nathusius’ bats, Pipistrellus nathusii, translocated from their migratory corridor. We found that bats treated with corneal anaesthesia in both eyes flew in random directions after translocation and release, contrasting bats with a single eye treated, and the control group, which both oriented in the seasonally appropriate direction. Using a Y-maze test, we confirmed that light detection remained unaffected by topical anaesthesia. Therefore our results suggest the cornea as a possible site of magnetoreception in bats, although other conceivable effects of the anaesthetic are also explored. Furthermore, we demonstrate that the corneal based sense is of bilateral nature but can function in a single eye if necessary

    Migratory flight imposes oxidative stress in bats

    Get PDF
    Many animal species migrate over long distances, but the physiological challenges of migration are poorly understood. It has recently been suggested that increased molecular oxidative damage might be one important challenge for migratory animals. We tested the hypothesis that autumn migration imposes an oxidative challenge to bats by comparing values of 4 blood-based markers of oxidative status (oxidative damage and both enzymatic and nonenzymatic antioxidants) between Nathusius’ bats Pipistrellus nathusii that were caught during migration flights with those measured in conspecifics after resting for 18 or 24 h. Experiments were carried out at Pape Ornithological Station in Pape (Latvia) in 2016 and 2017. Our results show that flying bats have a blood oxidative status different from that of resting bats due to higher oxidative damage and different expression of both nonenzymatic and enzymatic antioxidants (glutathione peroxidase). The differences in oxidative status markers varied between sampling years and were independent from individual body condition or sex. Our work provides evidence that migratory flight might impose acute oxidative stress to bats and that resting helps animals to recover from oxidative damage accrued en route. Our data suggest that migrating bats and birds might share similar strategies of mitigating and recovering from oxidative stress

    First record of a Nathusius' pipistrelle (Pipistrellus nathusii) overwintering at a latitude above 60ÂșN

    Get PDF
    Highly mobile species are considered to be the first to respond to climate change by transforming their ranges of distribution. There is evidence suggesting that Pipistrellus nathusii, a species capable of long-distance migration, is expanding both its reproduction and overwintering ranges to the North. We recorded the echolocation calls of bats at 16 sites in South-Western Finland on two consecutive winters, and detected calls of P. nathusii at one of the sites throughout the second winter. To our knowledge, this is the northernmost record of an overwintering P. nathusii, and contributes to evidence that the species is already responding to climate change.Peer reviewe

    The immune response of bats differs between pre-migration and migration seasons

    Get PDF
    Maintaining a competent immune system is energetically costly and thus immunity may be traded against other costly traits such as seasonal migration. Here, we tested in long-distance migratory Nathusius' pipistrelles (Pipistrellus nathusii), if selected branches of immunity are expressed differently in response to the energy demands and oxidative stress of aerial migration. During the migration period, we observed higher baseline lymphocyte and lower neutrophil levels than during the pre-migration period, but no stronger response of cellular effectors to an antigen challenge. Baseline plasma haptoglobin, as a component of the humoral innate immunity, remained similar during both seasons, yet baseline plasma haptoglobin levels increased by a factor of 7.8 in migratory bats during an immune challenge, whereas they did not change during the pre-migration period. Oxidative stress was higher during migration than during pre-migration, yet there was no association between blood oxidative status and immune parameters, and immune challenge did not trigger any changes in oxidative stress, irrespective of season. Our findings suggest that humoral effectors of the acute phase response may play a stronger role in the first-line defense against infections for migrating bats compared to non-migrating bats. We conclude that Nathusius' pipistrelles allocate resources differently into the branches of their immune system, most likely following current demands resulting from tight energy budgets during migration

    Bidirectional movements of Nathusius’ pipistrelle bats (Pipistrellus nathusii) during autumn at a major migration corridor

    Get PDF
    Migration is well documented for many species throughout the animal kingdom. Although migration is also a common behaviour in bats, it is rarely studied due to the cryptic nature of the phenomenon. Recoveries of banded individuals have shown that Nathusius' pipistrelles (Pipistrellus nathusii) can fly more than 2000 km between their summer and winter ranges in Europe, but further details of how and where they move between the endpoints of their seasonal journeys remain elusive. Here, we used three-dimensional acoustic tracking at a coastal migration corridor to elucidate the flight behaviour of Nathusius' pipistrelles during late summer. Analyzing 432 recorded flight trajectories, we show that the majority of bats followed the expected southerly direction, parallel to the coastline, on all nights, and flying at the optimal speed for long-distance travel with minimal energy expenditure. However, on one day with stronger winds, about 20 % of the bats flew in the opposite, i.e. northerly, direction. The observation of a proportion of individuals flying antiparallel to the mass of migrating conspecifics within the same movement corridor highlights that individuals may follow contrasting movement strategies at the same time and place, presumably depending on environmental conditions. We argue that it is possible for Nathusius’ pipistrelles to fly back and forth (south and north) during autumn migration, spending more time on this migration corridor than required for a straight one-way flight. This highlights the urgent need to protect migration corridors along coastlines, particularly as wind energy development continues

    Fly-and-forage strategy in the bat Pipistrellus nathusii during autumn migration

    No full text
    Populations of Pipistrellus nathusii (Nathusius's bat), an insectivorous aerial-hawking species that breeds in north-eastern Europe, perform long-distance migrations between breeding sites and hibernation areas in central and southern Europe. The feeding strategy of migrating P nathusii was investigated in Latvia on the east coast of the Baltic Sea, exploring evidence for and against two non-mutually exclusive predictions that i) the bats feed shortly after dusk at highest aerial insect activity and continue to migrate thereafter or ii) apply a 'fly-and-forage' strategy and frequently interrupt their migration flight to feed. Echolocation calls and feeding buzzes of P. nathusii were recorded throughout the night from August until September on a known migration flyway over coastal dunes and at potential foraging sites in adjacent woodlands, over meadows and wetlands. The results indicate that P. nathusii applies a fly-and-forage strategy along the Baltic coast. However, a threshold in aerial insect availability may exist, below which no foraging occurs and migration continues

    Data from: Nathusius' bats optimize long-distance migration by flying at maximum range speed.

    No full text
    Metabolic rate of 12 Pipistrellus nathusii in relation to varying airspeed. We measured the metabolic rate of flying bats in a wind tunnel using the 13C labeled Na-bicarbonate method. The relationship between metabolic rate and airspeed was U-shaped in the majority of individuals. We could not find a U-shaped curve in a few individuals that engaged in flight manoeuvers, including landing. We used the shape of the U-shaped power curve to estimate minimum flight speed and maximum range speed for the study species. Further we present data on migration speed (n=37) and foraging flight speed (n=40) in wild Pipistrellus nathusii at a major miratory corridor in Latvia

    Data from: Nathusius' bats optimize long-distance migration by flying at maximum range speed.

    No full text
    Metabolic rate of 12 Pipistrellus nathusii in relation to varying airspeed. We measured the metabolic rate of flying bats in a wind tunnel using the 13C labeled Na-bicarbonate method. The relationship between metabolic rate and airspeed was U-shaped in the majority of individuals. We could not find a U-shaped curve in a few individuals that engaged in flight manoeuvers, including landing. We used the shape of the U-shaped power curve to estimate minimum flight speed and maximum range speed for the study species. Further we present data on migration speed (n=37) and foraging flight speed (n=40) in wild Pipistrellus nathusii at a major miratory corridor in Latvia.,Voigtetal_Nathusius_bats_JEXPBIOL_2019

    Data from: Conservation genetics of the pond bat (Myotis dasycneme) with special focus on the populations in northwestern Germany and Jutland, Denmark

    No full text
    Conservation genetics is important in the management of endangered species, helping to understand their connectivity and long-term viability, thus identifying populations of importance for conservation. The pond bat (Myotis dasycneme) is a rare species classified as ‘Near threatened’ with a wide but patchy Palearctic distribution. A total of 277 samples representing populations in Denmark, Germany, Latvia, Hungary and Russia were used in the genetic analyses; 224 samples representing Denmark, Germany and Russia were analysed at 10 microsatellite loci; 241 samples representing all areas were analysed using mitochondrial D-loop and cytochrome B sequences. A Bayesian clustering approach revealed two poorly resolved clusters, one representing the Danish and German group and the other the Russian group. However, significantly, different pairwise FST and DEST estimates were observed between the Danish and German group, and between the Danish and Russian group suggesting a recent population structure. These conflicting results might be attributed to the effect of migration or low resolution due to the number of microsatellite markers used. After concatenating the two mitochondrial sequences, analysis detected significant genetic differentiation between all populations, probably due to genetic drift combined with a founder event. The phylogenetic tree suggested a closer relationship between Russian and Northern European populations compared to the Hungarian population, implying that the latter belongs to an older ancestral population. This was supported by the observed haplotype network and higher nucleotide diversity in this population. The genetic structuring observed in the Danish/German pond bat stresses the need for a cross border management between the two countries. Further, the pronounced mtDNA structuring, together with the indicated migration between nearby populations suggest philopatric female behavior but male migration, emphasizes the importance of protecting suitable habitat mosaics to maintain a continuum of patches with dense pond bat populations across the species’ distribution range
    corecore