17,373 research outputs found

    Flux of nutrients from Russian rivers to the Arctic Ocean: Can we establish a baseline against which to judge future changes?

    Get PDF
    Climate models predict significant warming in the Arctic in the 21st century, which will impact the functioning of terrestrial and aquatic ecosystems as well as alter land‐ocean interactions in the Arctic. Because river discharge and nutrient flux integrate large‐scale processes, they should be sensitive indicators of change, but detection of future changes requires knowledge of current conditions. Our objective in this paper is to evaluate the current state of affairs with respect to estimating nutrient flux to the Arctic Ocean from Russian rivers. To this end we provide estimates of contemporary (1970s–1990s) nitrate, ammonium, and phosphate fluxes to the Arctic Ocean for 15 large Russian rivers. We rely primarily on the extensive data archives of the former Soviet Union and current Russian Federation and compare these values to other estimates and to model predictions. Large discrepancies exist among the various estimates. These uncertainties must be resolved so that the scientific community will have reliable data with which to calibrate Arctic biogeochemical models and so that we will have a baseline against which to judge future changes (either natural or anthropogenic) in the Arctic watershed

    MUSE observations of a changing-look AGN I: The re-appearance of the broad emission lines

    Get PDF
    Optical changing-look Active Galactic Nuclei (AGN) are a class of sources that change type within a short timescale of years or decades. This change is characterised by the appearance or disappearance of broad emission lines, often associated with dramatic AGN continuum flux changes that are orders of magnitude larger than those expected from typical AGN variability. In this work we study for the first time the host galaxy of a changing-look AGN, Mrk 590, using high spatial resolution optical and near-infrared observations. We discover that after ~ 10 yr absence, the optical broad emission lines of Mrk 590 have reappeared. The AGN optical continuum flux however, is still ~ 10 times lower than that observed during the most luminous state in the 1990s. The host galaxy shows a 4.5 kpc radius star-forming ring with knots of ionised and cold molecular gas emission. Extended ionised and warm molecular gas emission are detected in the nucleus, indicating that there is a reservoir of gas as close as 60 pc from the black hole. We observe a nuclear gas spiral between radii r ~ 0.5 - 2 kpc, which has been suggested as a dynamical mechanism able to drive the necessary gas to fuel AGN. We also discover blue-shifted and high velocity dispersion [O III] emission out to a radius of 1 kpc, tracing a nuclear gas outflow. The gas dynamics in Mrk 590 suggest a complex balance between gas inflow and outflow in the nucleus of the galaxy.Comment: Accepted for publication in MNRA

    Subband Engineering Even-Denominator Quantum Hall States

    Full text link
    Proposed even-denominator fractional quantum Hall effect (FQHE) states suggest the possibility of excitations with non-Abelian braid statistics. Recent experiments on wide square quantum wells observe even-denominator FQHE even under electrostatic tilt. We theoretically analyze these structures and develop a procedure to accurately test proposed quantum Hall wavefunctions. We find that tilted wells favor partial subband polarization to yield Abelian even-denominator states. Our results show that tilting quantum wells effectively engineers different interaction potentials allowing exploration of a wide variety of even-denominator states

    Testing Multi-Field Inflation: A Geometric Approach

    Get PDF
    We develop an approach for linking the power spectra, bispectrum, and trispectrum to the geometric and kinematical features of multifield inflationary Lagrangians. Our geometric approach can also be useful in determining when a complicated multifield model can be well approximated by a model with one, two, or a handful of fields. To arrive at these results, we focus on the mode interactions in the kinematical basis, starting with the case of no sourcing and showing that there is a series of mode conservation laws analogous to the conservation law for the adiabatic mode in single-field inflation. We then treat the special case of a quadratic potential with canonical kinetic terms, showing that it produces a series of mode sourcing relations identical in form to that for the adiabatic mode. We build on this result to show that the mode sourcing relations for general multifield inflation are extension of this special case but contain higher-order covariant derivatives of the potential and corrections from the field metric. In parallel, we show how these interactions depend on the geometry of the inflationary Lagrangian and on the kinematics of the associated field trajectory. Finally, we consider how the mode interactions and effective number of fields active during inflation are reflected in the spectra and introduce a multifield consistency relation, as well as a multifield observable that can potentially distinguish two-field scenarios from scenarios involving three or more effective fields.Comment: 21 pages, 4 figures + tables. Revised to clarify several points and reorganized Section III for pedagogical reasons. Error in one equation and typos were corrected, as well as additional references adde

    Testing Two-Field Inflation

    Full text link
    We derive semi-analytic formulae for the power spectra of two-field inflation assuming an arbitrary potential and non-canonical kinetic terms, and we use them both to build phenomenological intuition and to constrain classes of two-field models using WMAP data. Using covariant formalism, we first develop a framework for understanding the background field kinematics and introduce a "slow-turn" approximation. Next, we find covariant expressions for the evolution of the adiabatic/curvature and entropy/isocurvature modes, and we discuss how the mode evolution can be inferred directly from the background kinematics and the geometry of the field manifold. From these expressions, we derive semi-analytic formulae for the curvature, isocurvature, and cross spectra, and the spectral observables, all to second-order in the slow-roll and slow-turn approximations. In tandem, we show how our covariant formalism provides useful intuition into how the characteristics of the inflationary Lagrangian translate into distinct features in the power spectra. In particular, we find that key features of the power spectra can be directly read off of the nature of the roll path, the curve the field vector rolls along with respect to the field manifold. For example, models whose roll path makes a sharp turn 60 e-folds before inflation ends tend to be ruled out because they produce strong departures from scale invariance. Finally, we apply our formalism to confront four classes of two-field models with WMAP data, including doubly quadratic and quartic potentials and non-standard kinetic terms, showing how whether a model is ruled out depends not only on certain features of the inflationary Lagrangian, but also on the initial conditions. Ultimately, models must possess the right balance of kinematical and dynamical behaviors, which we capture in a set of functions that can be reconstructed from spectral observables.Comment: Revised to match accepted PRD version: Improved discussion of background kinematics and multi-field effects, added tables summarizing key quantities and their links to observables, more detailed figures, fixed typos in former equations (103) and (117). 49 PRD pages, 11 figure

    Variability of Fe II Emission Features in the Seyfert 1 Galaxy NGC 5548

    Get PDF
    We study the low-contrast Fe II emission blends in the ultraviolet (1250--2200A) and optical (4000--6000A) spectra of the Seyfert 1 galaxy NGC 5548 and show that these features vary in flux and that these variations are correlated with those of the optical continuum. The amplitude of variability of the optical Fe II emission is 50% - 75% that of Hbeta and the ultraviolet Fe II emission varies with an even larger amplitude than Hbeta. However, accurate measurement of the flux in these blends proves to be very difficult even using excellent Fe II templates to fit the spectra. We are able to constrain only weakly the optical Fe II emission-line response timescale to a value less than several weeks; this upper limit exceeds all the reliably measured emission-line lags in this source so it is not particularly meaningful. Nevertheless, the fact that the optical Fe II and continuum flux variations are correlated indicates that line fluorescence in a photoionized plasma, rather than collisional excitation, is responsible for the Fe II emission. The iron emission templates are available upon request.Comment: 34 pages including 12 figures and 2 tables. Accepted for publication by ApJ (tentatively in vol. 626 June 10, 2005

    Intermediate resolution H-beta spectroscopy and photometric monitoring of 3C 390.3 I. Further evidence of a nuclear accretion disk

    Full text link
    We have monitored the AGN 3C390.3 between 1995 and 2000.Two large amplitude outbursts, of different duration, in continuum and H beta light were observed ie.: in October 1994 a brighter flare that lasted about 1000 days and in July 1997 another one that lasted about 700 days were detected. The flux in the H beta wings and line core vary simultaneously, a behavior indicative of predominantly circular motions in the BLR.Important changes of the Hbeta emission profiles were detected: at times, we found profiles with prominent asymmetric wings, as those normaly seen in Sy1s, while at other times, we observe profiles with weak almost symmetrical wings, similar to those seen in Sy1.8s. We found that the radial velocity difference between the red and blue bumps is anticorrelated with the light curves of H beta and continuum radiation.e found that the radial velocity difference between the red and blue bumps is anticorrelated with the light curves of H-beta and continuum radiation. Theoretical H-beta profiles were computed for an accretion disk, the observed profiles are best reproduced by an inclined disk (25 deg) whose region of maximum emission is located roughly at 200 Rg. The mass of the black hole in 3C 390.3, estimated from the reverberation analysis is Mrev = 2.1 x 10^9 Msun, ie. 5 times larger than previous estimatesComment: 18 pages, 13 figures, 4 tables. to appear in Astronomy and Astrophysic
    • 

    corecore