14,878 research outputs found

    Flow angle sensor and readout system

    Get PDF
    Sensor determines fluid flow angles by means of a simple vane that positions itself in the direction of the flow. The vane rotates a small light-reflecting disc as it moves while the readout system uses two cyclically polarized light beams

    Millivolt signal limiter

    Get PDF
    Low-voltage limiter circuit suppresses the output of platinum probes at temperatures beyond their operating range. The limiter circuit comprises an operational amplifier with a dual feedback loop. The signal limiter is useful in low-voltage instrumentation circuits normally operable or set for cryogenic temperatures

    Electronic high pass filter

    Get PDF
    Ultra accurate filter is used with static type pressure transducers where it is desirable to extract low frequency dynamic signals from combined static and dynamic signal. System can be calibrated at any time with dc voltages

    Low level signal limiter

    Get PDF
    A limiting circuit is described which prevents a signal being supplied to a signal amplifier from exceeding a predetermined value. The circuit is designed to permit a signal voltage to be fed directly to a signal amplifier without passing through the operational amplifier and without being altered undesirably. When the signal level increases to the predetermined value, the summing point shifts from the input of the operational amplifier to the output of the limiting circuit

    An absorption event in the X-ray lightcurve of NGC 3227

    Full text link
    We have monitored the Seyfert galaxy NGC 3227 with the Rossi X-ray Timing Explorer (RXTE) since January 1999. During late 2000 and early 2001 we observed an unusual hardening of the 2-10 keV X-ray spectrum which lasted several months. The spectral hardening was not accompanied by any correlated variation in flux above 8 keV. We therefore interpret the spectral change as transient absorption by a gas cloud of column density 2.6 10^23 cm^-2 crossing the line of sight to the X-ray source. A spectrum obtained by XMM-Newton during an early phase of the hard-spectrum event confirms the obscuration model and shows that the absorbing cloud is only weakly ionised. The XMM-Newton spectrum also shows that ~10% of the X-ray flux is not obscured, but this unabsorbed component is not significantly variable and may be scattered radiation from a large-scale scattering medium. Applying the spectral constraints on cloud ionisation parameter and assuming that the cloud follows a Keplerian orbit, we constrain the location of the cloud to be R~10-100 light-days from the central X-ray source, and its density to be n_H~10^8cm^-3, implying that we have witnessed the eclipse of the X-ray source by a broad line region cloud.Comment: 5 pages, 6 figures, accepted for publication in MNRAS letter

    First limits on the 3-200 keV X-ray spectrum of the quiet Sun using RHESSI

    Full text link
    We present the first results using the Reuven Ramaty High-Energy Solar Spectroscopic Imager, RHESSI, to observe solar X-ray emission not associated with active regions, sunspots or flares (the quiet Sun). Using a newly developed chopping technique (fan-beam modulation) during seven periods of offpointing between June 2005 to October 2006, we obtained upper limits over 3-200 keV for the quietest times when the GOES12 1-8A flux fell below 10−810^{-8} Wm−2^{-2}. These values are smaller than previous limits in the 17-120 keV range and extend them to both lower and higher energies. The limit in 3-6 keV is consistent with a coronal temperature ≤6\leq 6 MK. For quiet Sun periods when the GOES12 1-8A background flux was between 10−810^{-8} Wm−2^{-2} and 10−710^{-7} Wm−2^{-2}, the RHESSI 3-6 keV flux correlates to this as a power-law, with an index of 1.08±0.131.08 \pm 0.13. The power-law correlation for microflares has a steeper index of 1.29±0.061.29 \pm 0.06. We also discuss the possibility of observing quiet Sun X-rays due to solar axions and use the RHESSI quiet Sun limits to estimate the axion-to-photon coupling constant for two different axion emission scenarios.Comment: 4 pages, 3 figures, Accepted by ApJ letter

    Active Galaxies and Cluster Gas

    Full text link
    Two lines of evidence indicate that active galaxies, principally radio galaxies, have heated the diffuse hot gas in clusters. The first is the general need for additional heating to explain the steepness of the X-ray luminosity--temperature relation in clusters, the second is to solve the cooling flow problem in cluster cores. The inner core of many clusters is radiating energy as X-rays on a timescale much shorter than its likely age. Although the temperature in this region drops by a factor of about 3 from that of the surrounding gas, little evidence is found for gas much cooler than that. Some form of heating appears to be taking place, probably by energy transported outward from the central accreting black hole or radio source. How that energy heats the gas depends on poorly understood transport properties (conductivity and viscosity) of the intracluster medium. Viscous heating is discussed as a possibility. Such heating processes have consequences for the truncation of the luminosity function of massive galaxies.Comment: 14 pages, 16 fig, Feb 2004 talk for Phil Trans Roy So

    Variability of Fe II Emission Features in the Seyfert 1 Galaxy NGC 5548

    Get PDF
    We study the low-contrast Fe II emission blends in the ultraviolet (1250--2200A) and optical (4000--6000A) spectra of the Seyfert 1 galaxy NGC 5548 and show that these features vary in flux and that these variations are correlated with those of the optical continuum. The amplitude of variability of the optical Fe II emission is 50% - 75% that of Hbeta and the ultraviolet Fe II emission varies with an even larger amplitude than Hbeta. However, accurate measurement of the flux in these blends proves to be very difficult even using excellent Fe II templates to fit the spectra. We are able to constrain only weakly the optical Fe II emission-line response timescale to a value less than several weeks; this upper limit exceeds all the reliably measured emission-line lags in this source so it is not particularly meaningful. Nevertheless, the fact that the optical Fe II and continuum flux variations are correlated indicates that line fluorescence in a photoionized plasma, rather than collisional excitation, is responsible for the Fe II emission. The iron emission templates are available upon request.Comment: 34 pages including 12 figures and 2 tables. Accepted for publication by ApJ (tentatively in vol. 626 June 10, 2005
    • …
    corecore