186 research outputs found

    Eat Smart. Play Hard™ San Luis Obispo: A Nutrition and Fitness Pilot Program for Young Children and Their Adult Buddies

    Get PDF
    Eat Smart. Play Hard™. San Luis Obispo!, a multi-component primary prevention program targeting low-income, Hispanic children 6-8 years, focuses on promoting healthy dietary and physical activity behaviors using an innovative child-adult buddy system approach. The child-adult buddies participate in multiple activities to increase their consumption of fruits and vegetables, and level of physical activity and decrease their consumption of sweetened beverages. The results of the pilot program show high program satisfaction and improvements in dietary and physical activity behaviors. Such programs provide an opportunity to establish and promote healthy behaviors among young children and ultimately prevent overweight development

    What’s Sex (Composition) Got to Do with It? The Importance of Sex Composition of Gangs for Female and Male Members’ Offending and Victimization

    Get PDF
    Sex composition of groups has been theorized in organizational sociology and found in prior work to structure female and male members’ behaviors and experiences. Peer group and gang literature similarly finds that the sex gap in offending varies across groups of differing sex ratios. Drawing on this and other research linking gang membership, offending, and victimization, we examine whether sex composition of gangs is linked to sex differences in offending in this sample, further assess whether sex composition similarly structures females’ and males’ victimization experiences, and if so, why. Self-report data from gang members in a multi-site, longitudinal study of 3,820 youths are employed. Results support previous findings about variations in member delinquency by both sex and sex composition of the gang and also indicate parallel variations in members’ victimization. These results are further considered within the context of facilitating effects such as gender dynamics, gang characteristics, and normative orientation

    Pretreatment dietary intake is associated with tumor suppressor DNA methylation in head and neck squamous cell carcinomas

    Get PDF
    Diet is associated with cancer prognosis, including head and neck cancer (HNC), and has been hypothesized to influence epigenetic state by determining the availability of functional groups involved in the modification of DNA and histone proteins. The goal of this study was to describe the association between pretreatment diet and HNC tumor DNA methylation. Information on usual pretreatment food and nutrient intake was estimated via food frequency questionnaire (FFQ) on 49 HNC cases. Tumor DNA methylation patterns were assessed using the Illumina Goldengate Methylation Cancer Panel. First, a methylation score, the sum of individual hypermethylated tumor suppressor associated CpG sites, was calculated and associated with dietary intake of micronutrients involved in one-carbon metabolism and antioxidant activity, and food groups abundant in these nutrients. Second, gene specific analyses using linear modeling with empirical Bayesian variance estimation were conducted to identify if methylation at individual CpG sites was associated with diet. All models were controlled for age, sex, smoking, alcohol and HPV status. Individuals reporting in the highest quartile of folate, vitamin B12 and vitamin A intake, compared with those in the lowest quartile, showed significantly less tumor suppressor gene methylation, as did patients reporting the highest cruciferous vegetable intake. Gene specific analyses identified differential associations between DNA methylation and vitamin B12 and vitamin A intake when stratifying by HPV status. These preliminary results suggest that intake of folate, vitamin A and vitamin B12 may be associated with the tumor DNA methylation profile in HNC and enhance tumor suppression

    Understanding how immigrant entrepreneurs view business opportunity formation through ethnicity

    Get PDF
    Given that international research is now consistently showing higher rates of entrepreneurial activity from immigrants above native people, research regarding our understanding of how immigrant entrepreneurs view business opportunity formation remains underdeveloped. Based upon a review of the literature, this chapter examines how ethnicity relates to business opportunity formation through constant interactions. It also introduces the Visual Mixed Embeddedness Framework as an empirical lens for understanding the differences in the business opportunity formation process models between immigrant and native entrepreneurs. By explaining how factors and traits from both home and host countries impact upon the immigrant entrepreneurial business activity process, the framework clearly identifies how the concept of ethnicity influences immigrant entrepreneurial opportunity formation activities in different ways. The framework contributes to existing knowledge by offering a novel method for examining the influence on business opportunity formation of ethnicity, the role of home and host countries and variations between immigrant and native entrepreneurs

    Evolution of Genome Size and Complexity in Pinus

    Get PDF
    BACKGROUND: Genome evolution in the gymnosperm lineage of seed plants has given rise to many of the most complex and largest plant genomes, however the elements involved are poorly understood. METHODOLOGY/PRINCIPAL FINDINGS: Gymny is a previously undescribed retrotransposon family in Pinus that is related to Athila elements in Arabidopsis. Gymny elements are dispersed throughout the modern Pinus genome and occupy a physical space at least the size of the Arabidopsis thaliana genome. In contrast to previously described retroelements in Pinus, the Gymny family was amplified or introduced after the divergence of pine and spruce (Picea). If retrotransposon expansions are responsible for genome size differences within the Pinaceae, as they are in angiosperms, then they have yet to be identified. In contrast, molecular divergence of Gymny retrotransposons together with other families of retrotransposons can account for the large genome complexity of pines along with protein-coding genic DNA, as revealed by massively parallel DNA sequence analysis of Cot fractionated genomic DNA. CONCLUSIONS/SIGNIFICANCE: Most of the enormous genome complexity of pines can be explained by divergence of retrotransposons, however the elements responsible for genome size variation are yet to be identified. Genomic resources for Pinus including those reported here should assist in further defining whether and how the roles of retrotransposons differ in the evolution of angiosperm and gymnosperm genomes

    The Staphylococcus aureus Response to Unsaturated Long Chain Free Fatty Acids: Survival Mechanisms and Virulence Implications

    Get PDF
    Staphylococcus aureus is an important human commensal and opportunistic pathogen responsible for a wide range of infections. Long chain unsaturated free fatty acids represent a barrier to colonisation and infection by S. aureus and act as an antimicrobial component of the innate immune system where they are found on epithelial surfaces and in abscesses. Despite many contradictory reports, the precise anti-staphylococcal mode of action of free fatty acids remains undetermined. In this study, transcriptional (microarrays and qRT-PCR) and translational (proteomics) analyses were applied to ascertain the response of S. aureus to a range of free fatty acids. An increase in expression of the σB and CtsR stress response regulons was observed. This included increased expression of genes associated with staphyloxanthin synthesis, which has been linked to membrane stabilisation. Similarly, up-regulation of genes involved in capsule formation was recorded as were significant changes in the expression of genes associated with peptidoglycan synthesis and regulation. Overall, alterations were recorded predominantly in pathways involved in cellular energetics. In addition, sensitivity to linoleic acid of a range of defined (sigB, arcA, sasF, sarA, agr, crtM) and transposon-derived mutants (vraE, SAR2632) was determined. Taken together, these data indicate a common mode of action for long chain unsaturated fatty acids that involves disruption of the cell membrane, leading to interference with energy production within the bacterial cell. Contrary to data reported for other strains, the clinically important EMRSA-16 strain MRSA252 used in this study showed an increase in expression of the important virulence regulator RNAIII following all of the treatment conditions tested. An adaptive response by S. aureus of reducing cell surface hydrophobicity was also observed. Two fatty acid sensitive mutants created during this study were also shown to diplay altered pathogenesis as assessed by a murine arthritis model. Differences in the prevalence and clinical importance of S. aureus strains might partly be explained by their responses to antimicrobial fatty acids

    Genetic effects on gene expression across human tissues

    Get PDF
    Characterization of the molecular function of the human genome and its variation across individuals is essential for identifying the cellular mechanisms that underlie human genetic traits and diseases. The Genotype-Tissue Expression (GTEx) project aims to characterize variation in gene expression levels across individuals and diverse tissues of the human body, many of which are not easily accessible. Here we describe genetic effects on gene expression levels across 44 human tissues. We find that local genetic variation affects gene expression levels for the majority of genes, and we further identify inter-chromosomal genetic effects for 93 genes and 112 loci. On the basis of the identified genetic effects, we characterize patterns of tissue specificity, compare local and distal effects, and evaluate the functional properties of the genetic effects. We also demonstrate that multi-tissue, multi-individual data can be used to identify genes and pathways affected by human disease-associated variation, enabling a mechanistic interpretation of gene regulation and the genetic basis of diseas
    corecore