38 research outputs found

    Plankton Ecology and Biogeochemistry in the Changing Arctic Ocean

    Get PDF

    Rethinking the causes of pilonidal sinus disease: a matched cohort study

    Get PDF
    Our understanding of pilonidal sinus disease (PSD) is based on a paper published 29 years ago by Karydakis. Since then, surgeons have been taught that hair more easily penetrates wet skin, leading to the assumption that sweating promotes PSD. This postulate, however, has never been proven. Thus we used pilocarpine iontophoresis to assess sweating in the glabella sacralis. 100 patients treated for PSD and 100 controls were matched for sex, age and body mass index (BMI). Pilocarpine iontophoresis was performed for 5 min, followed by 15 min of sweat collection. PSD patients sweated less than their matched pairs (18.4 ± 1.6 µl vs. 24.2 ± 2.1 µl, p = 0.03). Men sweated more than women (22.2 ± 1.2 µl vs. 15.0 ± 1.0 µl in non-PSD patients (p < 0.0001) and 20.0 ± 1.9 µl vs. 11.9 ± 2.0 µl in PSD patients (p = 0.051)). And regular exercisers sweated more than non-exercisers (29.1 ± 2.9 µl vs. 18.5 ± 1.6 µl, p = 0.0006 for men and 20.7 ± 2.3 µl vs. 11.4 ± 1.4 µl, p = 0.0005 for women). PSD patients sweat less than matched controls. Thus sweating may have a protective effect in PSD rather than being a risk factor

    Marine meso-herbivore consumption scales faster with temperature than seaweed primary production

    No full text
    Respiration of ectotherms is predicted to increase faster with rising environmental temperature than photosynthesis of primary producers because of the differential temperature dependent kinetics of the key enzymes involved. Accordingly, if biological processes at higher levels of complexity are constrained by underlying metabolic functions, food consumption by heterotrophs should increase more rapidly with rising temperature than photo-autoptrophic primary production. We compared rates of photosynthesis and growth of the benthic seaweed Fucus vesiculosus with respiration and consumption of the isopod Idotea baltica to achieve a mechanistic understanding why warming strengthens marine plant–herbivore interactions. In laboratory experiments thallus pieces of the seaweed and individuals of the grazer were exposed to constant temperatures at a range from 10 to 20 °C. Photosynthesis of F. vesiculosus did not vary with temperature indicating efficient thermal acclimation whereas growth of the algae clearly increased with temperature. Respiration and food consumption of I. baltica also increased with temperature. Grazer consumption scaled about 2.5 times faster with temperature than seaweed production. The resulting mismatch between algal production and herbivore consumption may result in a net loss of algal tissue at elevated temperatures. Our study provides an explanation for faster decomposition of seaweeds at elevated temperatures despite the positive effects of high temperatures on algal growth

    Marine meso-herbivore consumption scales faster with temperature than seaweed primary production, supplementary material

    No full text
    Respiration of ectotherms is predicted to increase faster with rising environmental temperature than photosynthesis of primary producers because of the differential temperature dependent kinetics of the key enzymes involved. Accordingly, if biological processes at higher levels of complexity are constrained by underlying metabolic functions food consumption by heterotrophs should increase more rapidly with rising temperature than photo-autoptrophic primary production. We compared rates of photosynthesis and growth of the benthic seaweed Fucus vesiculosus with respiration and consumption of the isopod Idotea baltica to achieve a mechanistic understanding why warming strengthens marine plant-herbivore interactions. In laboratory experiments thallus pieces of the seaweed and individuals of the grazer were exposed to constant temperatures at a range from 10 to 20°C. Photosynthesis of F. vesiculosus did not vary with temperature indicating efficient thermal acclimation whereas growth of the algae clearly increased with temperature. Respiration and food consumption of I. baltica also increased with temperature. Grazer consumption scaled about 2.5 times faster with temperature than seaweed production. The resulting mismatch between algal production and herbivore consumption may result in a net loss of algal tissue at elevated temperatures. Our study provides an explanation for faster decomposition of seaweeds at elevated temperatures despite the positive effects of high temperatures on algal growth

    Rafting communities on pelagic Sargassum and floating marine debris in the Sargasso Sea

    No full text
    Pelagic Sargassum and floating marine debris were collected during cruise MSM41 of the German research vessel Maria S. Merian in April 2015 in the Sargasso Sea, western subtropical North Atlantic. In total 39 debris samples and 42 Sargassum samples were taken and characterized. The associated biota was analyzed. Mobile species were counted, sessile organisms were recorded as present/absent. A visual ship-based survey was conducted to quantify pelagic Sargassum and floating marine debris in the Sargasso Sea. Biomass and surface area of Sargassum was measured from thalli beached at Sisal Beach, Yucatan peninsula, Mexico to establish the biomass:surface area ratio for the two species Sargassum fluitans and Sargassum natans
    corecore