35,526 research outputs found

    New ways of being public: the experience of foundation degrees

    Get PDF
    This article explores the recent development of new spheres of public engagement within UK higher education through an analysis of the foundation degree qualification. These, according to the Higher Education Funding Council for England (HEFCE), were designed to equip students with the combination of technical skills, academic knowledge, and transferable skills increasingly being demanded by employers, and they have been identified as being at the forefront of educational agendas aimed at increasing employer engagement in the higher education (HE) sector. As such, they might be regarded as an expression of the 'increasing privatisation' of HE. However, this article argues that, on the contrary, they have enabled the development of new areas of public engagement relating to the design and delivery of courses as well as providing new opportunities for the pursuit of public policy goals such as widening participation. Such outcomes, it is argued, are the result of a number of factors that explain the 'publicness' of the qualification and that should be sustained to ensure the implementation of the 2006 Leitch Report in a manner that further develops public engagement

    Searching for Globally Optimal Functional Forms for Inter-Atomic Potentials Using Parallel Tempering and Genetic Programming

    Full text link
    We develop a Genetic Programming-based methodology that enables discovery of novel functional forms for classical inter-atomic force-fields, used in molecular dynamics simulations. Unlike previous efforts in the field, that fit only the parameters to the fixed functional forms, we instead use a novel algorithm to search the space of many possible functional forms. While a follow-on practical procedure will use experimental and {\it ab inito} data to find an optimal functional form for a forcefield, we first validate the approach using a manufactured solution. This validation has the advantage of a well-defined metric of success. We manufactured a training set of atomic coordinate data with an associated set of global energies using the well-known Lennard-Jones inter-atomic potential. We performed an automatic functional form fitting procedure starting with a population of random functions, using a genetic programming functional formulation, and a parallel tempering Metropolis-based optimization algorithm. Our massively-parallel method independently discovered the Lennard-Jones function after searching for several hours on 100 processors and covering a miniscule portion of the configuration space. We find that the method is suitable for unsupervised discovery of functional forms for inter-atomic potentials/force-fields. We also find that our parallel tempering Metropolis-based approach significantly improves the optimization convergence time, and takes good advantage of the parallel cluster architecture

    Development of low-temperature transistor modules to improve the MSFC mid-infrared array

    Get PDF
    This report describes the low-temperature transistor modules designed for use with the MSFC mid-infrared array. The modules were developed in the Space Science Laboratory at Marshall Space Flight Center with Center Director's Discretionary Funds. The transistors (JFETs), which operate at a temperature of 77 K, are epoxied to a copper surface attached to a Teflon substrate. The module substrate insulates the JFETs from the 1.5K detector work surfaces and provides a convenient mounting structure for additional components such as solder pins. These modules have maintained their structural integrity during repeated temperature cycling, and they have to be convenient during maintenance and servicing of the infrared array

    Field evaluation of entomopathogenic nematodes against orchard pests

    Get PDF
    Survival of pest in micro-plot trials (container studies) or field plot trials was monitored after exposure to commercially used EPN strains. Experimental plots were artificially infested with pest larvae that naturally burrowed into the soil for diapause. Either larval mortality or adult emergence, was assessed to estimate the control effect of the EPN treatment. Here we present preliminary results from three ongoing projects

    Three years of greenhouse gas column-averaged dry air mole fractions retrieved from satellite – Part 2: Methane

    Get PDF
    Carbon dioxide (CO2) and methane (CH4) are the two most important anthropogenic greenhouse gases. SCIAMACHY on ENVISAT is the first satellite instrument whose measurements are sensitive to concentration changes of the two gases at all altitude levels down to the Earth's surface where the source/sink signals are largest. We have processed three years (2003–2005) of SCIAMACHY near-infrared nadir measurements to simultaneously retrieve vertical columns of CO2 (from the 1.58 µm absorption band), CH4 (1.66 µm) and oxygen (O2 A-band at 0.76 µm) using the scientific retrieval algorithm WFM-DOAS. We show that the latest version of WFM-DOAS, version 1.0, which is used for this study, has been significantly improved with respect to its accuracy compared to the previous versions while essentially maintaining its high processing speed (~1 min per orbit, corresponding to ~6000 single measurements, and per gas on a standard PC). The greenhouse gas columns are converted to dry air column-averaged mole fractions, denoted XCO2 (in ppm) and XCH4 (in ppb), by dividing the greenhouse gas columns by simultaneously retrieved dry air columns. For XCO2 dry air columns are obtained from the retrieved O2 columns. For XCH4 dry air columns are obtained from the retrieved CO2 columns because of better cancellation of light path related errors compared to using O2 columns retrieved from the spectrally distant O2 A-band. Here we focus on a discussion of the XCH4 data set. The XCO2 data set is discussed in a separate paper (Part 1). For 2003 we present detailed comparisons with the TM5 model which has been optimally matched to highly accurate but sparse methane surface observations. After accounting for a systematic low bias of ~2% agreement with TM5 is typically within 1–2%. We investigated to what extent the SCIAMACHY XCH4 is influenced by the variability of atmospheric CO2 using global CO2 fields from NOAA's CO2 assimilation system CarbonTracker. We show that the CO2 corrected and uncorrected XCH4 spatio-temporal pattern are very similar but that agreement with TM5 is better for the CarbonTracker CO2 corrected XCH4. In line with previous studies (e.g., Frankenberg et al., 2005b) we find higher methane over the tropics compared to the model. We show that tropical methane is also higher when normalizing the CH4 columns with retrieved O2 columns instead of CO2. In consistency with recent results of Frankenberg et al. (2008b) it is shown that the magnitude of the retrieved tropical methane is sensitive to the choice of the spectroscopic line parameters of water vapour. Concerning inter-annual variability we find similar methane spatio-temporal pattern for 2003 and 2004. For 2005 the retrieved methane shows significantly higher variability compared to the two previous years, most likely due to somewhat larger noise of the spectral measurement

    BBO and the Neutron-Star-Binary Subtraction Problem

    Get PDF
    The Big Bang Observer (BBO) is a proposed space-based gravitational-wave (GW) mission designed primarily to search for an inflation-generated GW background in the frequency range 0.1-1 Hz. The major astrophysical foreground in this range is gravitational radiation from inspiraling compact binaries. This foreground is expected to be much larger than the inflation-generated background, so to accomplish its main goal, BBO must be sensitive enough to identify and subtract out practically all such binaries in the observable universe. It is somewhat subtle to decide whether BBO's current baseline design is sufficiently sensitive for this task, since, at least initially, the dominant noise source impeding identification of any one binary is confusion noise from all the others. Here we present a self-consistent scheme for deciding whether BBO's baseline design is indeed adequate for subtracting out the binary foreground. We conclude that the current baseline should be sufficient. However if BBO's instrumental sensitivity were degraded by a factor 2-4, it could no longer perform its main mission. It is impossible to perfectly subtract out each of the binary inspiral waveforms, so an important question is how to deal with the "residual" errors in the post-subtraction data stream. We sketch a strategy of "projecting out" these residual errors, at the cost of some effective bandwidth. We also provide estimates of the sizes of various post-Newtonian effects in the inspiral waveforms that must be accounted for in the BBO analysis.Comment: corrects some errors in figure captions that are present in the published versio

    Classical and quantum anisotropic Heisenberg antiferromagnets

    Full text link
    We study classical and quantum Heisenberg antiferromagnets with exchange anisotropy of XXZ-type and crystal field single-ion terms of quadratic and cubic form in a field. The magnets display a variety of phases, including the spin-flop (or, in the quantum case, spin-liquid) and biconical (corresponding, in the quantum lattice gas description, to supersolid) phases. Applying ground-state considerations, Monte Carlo and density matrix renormalization group methods, the impact of quantum effects and lattice dimension is analysed. Interesting critical and multicritical behaviour may occur at quantum and thermal phase transitions.Comment: 13 pages, 14 figures, conferenc

    Teaching a New Dog Old Tricks: Resurrecting Multilingual Retrieval Using Zero-shot Learning

    Full text link
    While billions of non-English speaking users rely on search engines every day, the problem of ad-hoc information retrieval is rarely studied for non-English languages. This is primarily due to a lack of data set that are suitable to train ranking algorithms. In this paper, we tackle the lack of data by leveraging pre-trained multilingual language models to transfer a retrieval system trained on English collections to non-English queries and documents. Our model is evaluated in a zero-shot setting, meaning that we use them to predict relevance scores for query-document pairs in languages never seen during training. Our results show that the proposed approach can significantly outperform unsupervised retrieval techniques for Arabic, Chinese Mandarin, and Spanish. We also show that augmenting the English training collection with some examples from the target language can sometimes improve performance.Comment: ECIR 2020 (short
    corecore