333 research outputs found

    The Admissions Criteria for Professional Athletic Training Programs: A 2018 Review of Post-Baccalaureate Degrees

    Get PDF
    Purpose: Athletic training education has advanced its professional degree to an entry level masters, a decision motivated by professional health education developments over the last 10 years. In respect to Commission on Accreditation of Athletic Training Education (CAATE) accreditation standards as well as evolutionary changes in athletic training education, current prerequisite expectations of entry level applicants are largely dependent upon program. Analysis of the publicly available documents via websites and other programmatic documents of professional athletic training including prerequisite classes, supplemental admissions requirements, length and credits of program, cost of attendance and degree level of core faculty. Methods: 144 professional athletic training programs delivered at the graduate level, regardless of program design, as identified on the CAATE website in November 2018 were eligible for the analysis. Data were collected and recorded into a custom spreadsheet by one researcher regarding program characteristics, admission requirements, costs, and core faculty descriptors. Descriptive analyses were performed. Results: Most of the programs (n=96, 66.7%) were active and in good standing with the CAATE. Admissions requirements vary largely by program with 54.9% (n=142) requiring biology, 69.7% (n=142) requiring chemistry, 65.5% (n=142) requiring physics, 81.0% (n=142) requiring psychology, 99.3% (n=142) requiring anatomy, and 99.3% (n=142) requiring physiology. The average required observation hours were 48+40 with a range of 0 to 200 (n=141). Prerequisite GPA requirements varied from 2.0 to 3.40 with a mean of 2.90+0.23. Conclusion(s): Professional programs are in need of adjustment for admissions requirements to address the 2020 standards related to admissions

    Development of a Multiplex Real-Time PCR Assay for the detection of ruminant DNA

    Get PDF
    The U.S. Food and Drug Administration (FDA) has previously validated a real-time PCR-based assay that is currently being used by the FDA and several state laboratories as the official screening method. Due to several shortcomings to the assay, a multiplex real-time PCR assay (MRTA) to detect three ruminant species (bovine, caprine, and ovine) was developed using a lyophilized bead design. The assay contained two primer or probe sets: a "ruminant" set to detect bovine-, caprine-, and ovine-derived materials and a second set to serve as an internal PCR control, formatted using a lyophilized bead design. Performance of the assay was evaluated against stringent acceptance criteria developed by the FDA's Center for Veterinary Medicine's Office of Research. The MRTA for the detection of ruminant DNA passed the stringent acceptance criteria for specificity, sensitivity, and selectivity. The assay met sensitivity and reproducibility requirements by detecting 30 of 30 complete feed samples fortified with meals at 0.1 % (wt/wt) rendered material from each of the three ruminant species. The MRTA demonstrated 100 % selectivity (0.0 % false positives) for negative controls throughout the assessment period. The assay showed ruggedness in both sample selection and reagent preparation. Second and third analyst trials confirmed the quality of the written standard operating procedure with consistency of results. An external laboratory participating in a peer-verification trial demonstrated 100 % specificity in identifying bovine meat and bone meal, while exhibiting a 0.03 % rate of false positives. The assay demonstrated equal levels of sensitivity and reproducibility compared with the FDA's current validated real-time PCR assay. The assay detected three prohibited species in less than 1.5 h of total assay time, a significant improvement over the current real-time assay. These results demonstrated this assay's suitability for routine regulatory use both as a primary screening tool and as a confirmatory test

    Age at Menarche and Its Association with the Metabolic Syndrome and Its Components: Results from the KORA F4 Study

    Get PDF
    OBJECTIVE: The metabolic syndrome is a major public health challenge and identifies persons at risk for diabetes and cardiovascular disease. The aim of this study was to examine the association between age at menarche and the metabolic syndrome (IDF and NCEP ATP III classification) and its components. DESIGN: 1536 women aged 32 to 81 years of the German population based KORA F4 study were investigated. Data was collected by standardized interviews, physical examinations, and whole blood and serum measurements. RESULTS: Young age at menarche was significantly associated with elevated body mass index (BMI), greater waist circumference, higher fasting glucose levels, and 2 hour glucose (oral glucose tolerance test), even after adjusting for the difference between current BMI and BMI at age 25. The significant effect on elevated triglycerides and systolic blood pressure was attenuated after adjustment for the BMI change. Age at menarche was inversely associated with the metabolic syndrome adjusting for age (p-values: <0.001 IDF, 0.003 NCEP classification) and additional potential confounders including lifestyle and reproductive history factors (p-values: 0.001, 0.005). Associations remain significant when additionally controlling for recollected BMI at age 25 (p-values: 0.008, 0.033) or the BMI change since age 25 (p-values: 0.005, 0.022). CONCLUSION: Young age at menarche might play a role in the development of the metabolic syndrome. This association is only partially mediated by weight gain and increased BMI. A history of early menarche may help to identify women at risk for the metabolic syndrome

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use

    Get PDF
    Tobacco and alcohol use are leading causes of mortality that influence risk for many complex diseases and disorders 1 . They are heritable 2,3 and etiologically related 4,5 behaviors that have been resistant to gene discovery efforts 6–11 . In sample sizes up to 1.2 million individuals, we discovered 566 genetic variants in 406 loci associated with multiple stages of tobacco use (initiation, cessation, and heaviness) as well as alcohol use, with 150 loci evidencing pleiotropic association. Smoking phenotypes were positively genetically correlated with many health conditions, whereas alcohol use was negatively correlated with these conditions, such that increased genetic risk for alcohol use is associated with lower disease risk. We report evidence for the involvement of many systems in tobacco and alcohol use, including genes involved in nicotinic, dopaminergic, and glutamatergic neurotransmission. The results provide a solid starting point to evaluate the effects of these loci in model organisms and more precise substance use measures

    Versailles project on advanced materials and standards (VAMAS) interlaboratory study on measuring the number concentration of colloidal gold nanoparticles

    Get PDF
    We describe the outcome of a large international interlaboratory study of the measurement of particle number concentration of colloidal nanoparticles, project 10 of the technical working area 34, "Nanoparticle Populations" of the Versailles Project on Advanced Materials and Standards (VAMAS). A total of 50 laboratories delivered results for the number concentration of 30 nm gold colloidal nanoparticles measured using particle tracking analysis (PTA), single particle inductively coupled plasma mass spectrometry (spICP-MS), ultraviolet-visible (UV-Vis) light spectroscopy, centrifugal liquid sedimentation (CLS) and small angle X-ray scattering (SAXS). The study provides quantitative data to evaluate the repeatability of these methods and their reproducibility in the measurement of number concentration of model nanoparticle systems following a common measurement protocol. We find that the population-averaging methods of SAXS, CLS and UV-Vis have high measurement repeatability and reproducibility, with between-labs variability of 2.6%, 11% and 1.4% respectively. However, results may be significantly biased for reasons including inaccurate material properties whose values are used to compute the number concentration. Particle-counting method results are less reproducibile than population-averaging methods, with measured between-labs variability of 68% and 46% for PTA and spICP-MS respectively. This study provides the stakeholder community with important comparative data to underpin measurement reproducibility and method validation for number concentration of nanoparticles

    Versailles project on advanced materials and standards (VAMAS) interlaboratory study on measuring the number concentration of colloidal gold nanoparticles

    Get PDF
    We describe the outcome of a large international interlaboratory study of the measurement of particle number concentration of colloidal nanoparticles, project 10 of the technical working area 34, "Nanoparticle Populations" of the Versailles Project on Advanced Materials and Standards (VAMAS). A total of 50 laboratories delivered results for the number concentration of 30 nm gold colloidal nanoparticles measured using particle tracking analysis (PTA), single particle inductively coupled plasma mass spectrometry (spICP-MS), ultraviolet-visible (UV-Vis) light spectroscopy, centrifugal liquid sedimentation (CLS) and small angle X-ray scattering (SAXS). The study provides quantitative data to evaluate the repeatability of these methods and their reproducibility in the measurement of number concentration of model nanoparticle systems following a common measurement protocol. We find that the population-averaging methods of SAXS, CLS and UV-Vis have high measurement repeatability and reproducibility, with between-labs variability of 2.6%, 11% and 1.4% respectively. However, results may be significantly biased for reasons including inaccurate material properties whose values are used to compute the number concentration. Particle-counting method results are less reproducibile than population-averaging methods, with measured between-labs variability of 68% and 46% for PTA and spICP-MS respectively. This study provides the stakeholder community with important comparative data to underpin measurement reproducibility and method validation for number concentration of nanoparticles
    corecore