1,090 research outputs found

    Characterizaiton of Cold-formed Steel Shear Wall Behavior under Cyclic Loading for the CFS-NEES Building

    Get PDF
    The objective of this paper is to provide a full hysteretic characterization of OSB sheathed cold-formed steel (CFS) shear walls designed for use in the National Science Foundation funded Network for Earthquake Engineering Simulation (NEES) project: CFS-NEES (www.ce.jhu.edu/cfsnees). The shear walls were designed for a two-story ledger-framed building (i.e., the CFS-NEES building) that will undergo full-scale shake table testing at the University of Buffalo NEES site. Shear walls in real construction, such as the CFS-NEES building, have details that differ from the shear walls tested and provided for strength prediction in standards such as AISI-S213-07. Differences include: (a) ledger (rim track) members are attached across the interior face of the studs, (b) OSB panel seams, both horizontal and vertical, may not be aligned with the chord studs or only blocked with strap, (c) interior gypsum board is in place, (d) field studs may have a different thickness or grade from the chord studs, and other differences. In this work, these four highlighted differences (a-d) are specifically explored in a series of shear walls tests loaded via cyclic (CUREE) protocols to determine their hysteretic performance. The test results are compared with AISIS213-07 and hysteretic material characterizations utilizing an elastic-plastic model (EEEP) and a model capable of exhibiting pinching in the hysteretic loops (Pinching4). Recommendations are made with respect to modeling the shear walls

    The effect of mechanical and geometric uncertainty on perforated CFS bracing members

    Get PDF
    In the capacity design of cold-formed steel frames with X diagonal bracings, the ratio of overstrength to slenderness is particularly critical. The diagonal elements of these braces may be fabricated with perforations at the brace ends to satisfy design and detailing requirements for capacity protection of frames with concentric X bracings. In the paper, the influence of stochasticity in the geometrical features and mechanical properties on the overall structural response of specific cold-formed steel perforated elements is assessed. The impact of statistical variation in design parameters on the yield strength, ultimate strength, and ductility is evaluated through a Monte Carlo simulation. Variability in member geometric features was determined from current design specifications, while variability in steel mechanical properties was determined via experimental testing. Monte Carlo simulations indicate a slight reduction of yield and ultimate member resistance increasing the number of holes. A normal probability distribution function, with a skewness greater than zero, which increases with a larger number of holes, characterizes both the yield and ultimate strength histogram. The work concludes providing recommendations for designers to promote utilization of perforated braces in seismically-active area

    Quantum Electrodynamics of the Helium Atom

    Full text link
    Using singlet S states of the helium atom as an example, I describe precise calculation of energy levels in few-electron atoms. In particular, a complete set of effective operators is derived which generates O(m*alpha^6) relativistic and radiative corrections to the Schr"odinger energy. Average values of these operators can be calculated using a variational Schr"odinger wave function.Comment: 23 pages, revte

    A Refuelable Zinc/Air Battery for Fleet Electric Vehicle Propulsion

    Full text link
    We report the development and on-vehicle testing of an engineering prototype zinc/air battery. The battery is refueled by periodic exchange of spent electrolyte for zinc particles entrained in fresh electrolyte. The technology is intended to provide a capability for nearly continuous vehicle operation, using the fleet s home base for 10 minute refuelings and zinc recycling instead of commercial infrastructure. In the battery, the zinc fuel particles are stored in hoppers, from which they are gravity fed into individual cells and completely consumed during discharge. A six-celled (7V) engineering prototype battery was combined with a 6 V lead/acid battery to form a parallel hybrid unit, which was tested in series with the 216 V battery of an electric shuttle bus over a 75 mile circuit. The battery has an energy density of 140 Wh/kg and a mass density of 1.5 kg/L. Cost, energy efficiency, and alternative hybrid configurations are discussed

    Rapid interrogation of the physical and chemical characteristics of salbutamol sulphate aerosol from a pressurised metered-dose inhaler (pMDI)

    Get PDF
    Individual micron-sized solid particles from a Salamols pharmaceutical inhaler are stably captured in air using an optical trap for the first time. Raman spectroscopy of the levitated particles allows online interrogation of composition and deliquescent phase change within a high humidity environment that mimics the particle’s travel from inhaler to lun

    Exact solutions of closed string theory

    Get PDF
    We review explicitly known exact D=4D=4 solutions with Minkowski signature in closed bosonic string theory. Classical string solutions with space-time interpretation are represented by conformal sigma models. Two large (intersecting) classes of solutions are described by gauged WZW models and `chiral null models' (models with conserved chiral null current). The latter class includes plane-wave type backgrounds (admitting a covariantly constant null Killing vector) and backgrounds with two null Killing vectors (e.g., fundamental string solution). D>4D>4 chiral null models describe some exact D=4D=4 solutions with electromagnetic fields, for example, extreme electric black holes, charged fundamental strings and their generalisations. In addition, there exists a class of conformal models representing axially symmetric stationary magnetic flux tube backgrounds (including, in particular, the dilatonic Melvin solution). In contrast to spherically symmetric chiral null models for which the corresponding conformal field theory is not known explicitly, the magnetic flux tube models (together with some non-semisimple WZW models) are among the first examples of solvable unitary conformal string models with non-trivial D=4D=4 curved space-time interpretation. For these models one is able to express the quantum hamiltonian in terms of free fields and to find explicitly the physical spectrum and string partition function.Comment: 50 pages, harvma

    Renormalization-Scale-Invariant PQCD Predictions for R_e+e- and the Bjorken Sum Rule at Next-to-Leading Order

    Get PDF
    We discuss application of the physical QCD effective charge αV\alpha_V, defined via the heavy-quark potential, in perturbative calculations at next-to-leading order. When coupled with the Brodsky-Lepage-Mackenzie prescription for fixing the renormalization scales, the resulting series are automatically and naturally scale and scheme independent, and represent unambiguous predictions of perturbative QCD. We consider in detail such commensurate scale relations for the e+e−e^+e^- annihilation ratio Re+e−R_{e^+e^-} and the Bjorken sum rule. In both cases the improved predictions are in excellent agreement with experiment.Comment: 13 Latex pages with 5 figures; to be published in Physical Review
    • 

    corecore