22 research outputs found

    Fabrication Of Smooth Diamond Films On Sio2 By The Addition Of Nitrogen To The Gas Feed In Hot-filament Chemical Vapor Deposition

    Get PDF
    The morphology of small roughness diamond films deposited onto thermally oxidized silicon substrates by a process of anisotropic crystalline growth induced by nitrogen in a hot-filament chemical vapor deposition (CVD) reactor was investigated. Square plates of low roughness were obtained on the top surface of the diamond films. Scanning electron microscopy (SEM), atomic force microscopy (AFM) and micro-Raman spectroscopy indicated films made up of good quality. The films possessed a large number of defects due to substitutional nitrogen. Planar defects were created due to large amount of nitrogen introduced in the CVD process. Substitutional nitrogen provoked lateral vacancies that have a catalytic effect on the lateral rate of diamond growth.19410521056Angus, J.C., Hayman, C.C., (1988) Science, 241, p. 913Yarborough, W.A., Messier, R., (1990) Science, 241, p. 688Derjaguin, B.V., Fedoseev, D., (1977) Izd., , Nauka, Moscow, Chap. 4Tankala, K., DebRoy, T., (1992) J. Appl. Phys., 72, p. 712Okano, K., Koizumi, S., Silva, S.R.P., Amaratunga, G.A.J., (1996) Nature (London), 381, p. 140Liao, X.Z., Zhang, R.J., Lee, C.S., Tong Lee, S., Lam, Y.W., (1997) Diamond Relat. Mater., 6, p. 521Dos Santos Filho, S.G., Hasenack, C.M., Lopes, M.C.V., Baranauskas, V., (1995) Semicond. Sci. Technol., 10, p. 990Jin, S., Moustakas, T.D., (1994) Appl. Phys. Lett., 65, p. 403Locher, R., Wild, C., Herres, N., Behr, D., Koidl, P., (1996) Appl. Phys. Lett., 65, p. 759Walker, J.E., (1979) Rep. Prog. Phys., 42, p. 42Evans, T., Rainey, P., (1975) Proc. R. Soc. London, Ser. A, 344, p. 111Baranauskas, V., Li, B.B., Peterlevitz, A., Tosin, M.C., Durrant, S.F., (1999) J. Appl. Phys., 85, p. 7455Baranauskas, V., Peled, A., Trava-Airoldi, V.J., Lima, C.A.S., Doi, I., Corat, E.J., (1994) Appl. Surf. Sci., 79-80, p. 129Barros, R.C.M., Corat, E.J., Ferreira, N.G., Souza, T.M., Trava-Airoldi, V.J., Leite, N.F., Iha, K., (1996) Diamond Relat. Mater., 5, p. 1323Lang, A.R., (1964) Proc. Phys. Soc., 84, p. 871Sumida, N., Lang, A.R., (1988) Proc. R. Soc. London, Ser. A, 419, p. 235Bridon, P.R., Jones, R., (1993) Physica B, 185, p. 17

    Properties Of Carbon Nanostructures Prepared By Polyaniline Carbonization

    Get PDF
    Nanometric sponge-like structures have been prepared from the carburization of polyaniline-(emeradine salt) using a rapid immersion in hot-filament system fed with carbon dioxide, ethyl alcohol and argon. Fiber-like fragments of width in the range of 20 - 40 nm have been observed by field emission scanning electron microscopy (FESEM). Raman measurements suggested that benzenoid rings and amide were present in the carburized samples. Lowest threshold achieved for field emission was 23.5 V/μm. © 2007 IOP Publishing Ltd.6117174Bonard, J.M., Kind, H., Stöckli, T., Nilsson, L.O., (2001) Sol. State Electron., 45 (6), p. 893Journet, C., Bernier, P., (1998) Appl. Phys., 67 (1), p. 1Morell, G., Gonzlez-Berríos, A., Weiner, B.R., Gupta, S., (2006) J. Mater. Sci: Mater. Electron, 17 (6), p. 443Koeck, F.A.M., Zumer, M., Nemanic, V., Nemanich, R.J., (2006) Diam. Rel. Mater., 15 (4-8), p. 880Andreatta, A., Cao, Y., Chiang, J.C., Heger, A.J., (1988) Synth. Met., 26 (4), p. 383Konyushenko, E.N., Stejskal, J., Trchov, M., Hradil, J., Kovrov, J., Prokes, J., Cieslar, M., Sapurina, I., (2006) PolymerNastase, C., Nastase, F., Vaseashta, A., Stamatin, I., (2006) Prog. Sol. Sta. Chem., 34 (2-4), p. 181Mottaghittalab, V.B., Spinks, G.M., Wallace, G.G., (2006) Synth. Met.Nickels, P., Dittimer, W.U., Beyer, S., Kottahous, J.P., Simmel, F.C., (2004) Nanotech., 15 (11), p. 1524Zhang, M.Y., Kaner, R.B., (2004) J. Am. Chem. Soc., 126 (22), p. 7097Baibarac, M., Baltog, I., Lefrand, S., Mevellec, J.Y., Chauvet, O., (2003) Chem. Mater., 15 (21), p. 4149Quillard, S., Loaurn, G., Lefrant, S., MacDiamird, A.G., (1994) Phys. Rev., 50 (17), p. 12496Mammana, V.P., Santos, T.E.A., Mammana, A., Baranauskas, V., Ceragioli, H.J., Peterlevitz, A.C., (2002) Appl. Phys. Lett., 81 (18), p. 3470Baranauskas, V., Fontana, M., Ceragioli, H.J., Peterlevitz, A.C., (2004) Nanotech., 15 (10), p. 678Kurt Bonard, R.J.M., Karimi, A., (2001) Diam.Rel. Mater., 10 (11), p. 1962Gupta Weiner, S.B.R., Morell, G., (2002) Diam. Rel. Mater., 11 (3-6), p. 799Wu, K., Wang, E.G., Cao, Z.X., Wang, Z.L., Jiang, X., (2000) J. Appl. Phys., 88 (5), p. 2967Proffitt, S.S., Probert, S.J., Whitfield, M.D., Foord, J.S., Jackman, R.B., (1999) Diam. Rel. Mater., 8 (2-5), p. 76

    Field-emission Properties Of Sulphur Doped Nanocrystalline Diamonds

    Get PDF
    Nanostructured diamond doped with sulphur has been prepared using a hot-filament assisted chemical vapour deposition system fed with an ethyl alcohol, carbon disulfide, hydrogen, and argon mixture. The reduction of diamond grains to the nanoscale is relevant to create a network of defective grain boundaries which may be n-type doped to facilitate the transport and injection of electrons to the diamond grains located at the vacuum interface, enhancing the electron field-emission properties of the samples. The downsizing was produced by secondary nucleation and defects induced by sulphur and argon atoms in the chemical vapour deposition surface reactions. Sulphur also acts as an n-type dopant of diamond. Raman measurements show that the samples are nanodiamonds embedded in a matrix of graphite and disordered carbon grains and the morphology, revealed by field electron scanning microscopy, shows that the grains are in the range of 10 to 30 nm. The lowest threshold achieved for field emission was 13.20 V/μm. © 2007 IOP Publishing Ltd.6116670Yang, A.T.S., Lay, J.Y., Wong, M.S., Cheng, C.L., (2002) J. Appl. Phys., 92 (4), p. 2133Mammana, V.P., Tea, S., Mammana, A., Baranauskas, V., Ceragioli, H.J., Peterlevitz, A.C., (2002) Appl. Phys. Lett., 81 (18), p. 3470Baranauskas, V., Fontana, M., Ceragioli, H.J., Peterlevitz, A.C., (2004) Nanotech., 15 (10), p. 678Gruen, D.M., (1998) MRS Bull., 9, p. 32Jin, B.M., Kim, C.C., (1997) Appl. Phys. A: Solid Surf., 65 (1), p. 53Himpsel, F.J., Knapp, J.A., Vanvechten, J.A., Eastman, P.E., (1979) Phys. Rev., 20 (2), p. 624Bandis, B., Pate, B.B., (1996) Appl. Phys Lett., 69 (3), p. 366Okano, K., Yamada, T., Suave, A., Koizumi, S., Pate, B.B., (1999) Appl. Surf. Sci., 146 (1-4), p. 274Kurt Bonard, R.J.M., Karimi, A., (2001) Diam. Rel. Mater., 10 (11), p. 1962Bonnot, A.M., Deldem, M., Beaugnon, M., Fournier T.schouler, M.C., Mermoux, M., (1999) Diam. Rel. Mater., 8 (2-5), p. 631Gruen, D.M., Liu, S., Krauss, A.R., Liuy, A., Luo, J., Foster, C.M., (1994) J. Vac. Sci. Technol., 12 (4), p. 1491Gupta Weiner, S.B.R., Morell, G., (2002) Diam. Rel. Mater., 11 (3-6), p. 799Gupta Weiner, S.B.R., Morell, G., (2005) J. Appl. Phys., 97, p. 094307Morell, G., Gonzlez-Berríos, A., Weiner, B.R., Gupta, S., (2006) J. Mater. Sci: Mater. Electron, 17 (6), p. 443Koeck, F.A.M., Zumer, M., Nemanic, V., Nemanich, R.J., (2006) Diam. Rel. Mater., 15 (4-8), p. 880Shroder Nemanich, R.E.R.J., Glass, J.T., (1990) Phys. Rev., 41 (6), p. 3738Birrell, J., Gerbi, J.E., Auciello, O., Gibson, J.M., Johnson, J., Carlisle, J.A., (2005) Diam. Rel. Mater., 14 (1), p. 86Ferrari, A.C., Robertson, J., (2001) Phys. Rev., 63, pp. 121405RWu, K., Wang, E.G., Cao, Z.X., Wang, Z.L., Jiang, X., (2000) J. Appl. Phys., 88 (5), p. 2967Proffitt, S.S., Probert, S.J., Whitfield, M.D., Foord, J.S., Jackman, R.B., (1999) Diam. Rel. Mater., 8 (2-5), p. 76

    Characterization Of Boron Doped Nanocrystalline Diamonds

    Get PDF
    Nanostructured diamond doped with boron was prepared using a hot-filament assisted chemical vapour deposition system fed with an ethyl alcohol, hydrogen and argon mixture. The reduction of the diamond grains to the nanoscale was produced by secondary nucleation and defects induced by argon and boron atoms via surface reactions during chemical vapour deposition. Raman measurements show that the samples are nanodiamonds embedded in a matrix of graphite and disordered carbon grains, while morphological investigations using field electron scanning microscopy show that the size of the grains ranges from 20 to 100 nm. The lowest threshold fields achieved were in the 1.6 to 2.4 V/μm range. © 2008 IOP Publishing Ltd.100PART 5Himpsel, F.J., Knapp, J.A., VanVechten, J.A., Eastman, P.E., (1979) Phys. Rev., 20 B, p. 624Bandis, B., Pate, B.B., (1996) Appl. Phys Lett., 69, p. 366Mammana, V.P., Santos, T.E.A., Mammana, A., Baranauskas, V., Ceragioli, H.J., Peterlevitz, A.C., (2002) Appl. Phys. Lett., 81, p. 3470Baranauskas, V., Fontana, M., Ceragioli, H.J., Peterlevitz, A.C., (2004) Nanotech., 15 (10), pp. S678Shroder, R.E., Nemanich, R.J., Glass, J.T., (1990) Phys. Rev., 41 B, p. 3738Ferrari, A.C., Robertson, J., (2001) Phys. Rev., 63 B. , 121405(R)Jiang, X., Frederick, C.K.Au., Lee, S.T., (2002) J. Appl. Phys., 92 (5), p. 2880Lee, Y.C., Lin, S.J., Lin, I.N., Cheng, H.F., (2005) J. Appl. Phys., 97, p. 05431

    Synthesis And Characterization Of Boron-doped Carbon Nanotubes

    Get PDF
    Boron-doped carbon nanotubes have been prepared by chemical vapour deposition of ethyl alcohol doped with B2O3 using a hot-filament system. Multi-wall carbon nanotubes of diameters in the range of 30 - 100 nm have been observed by field emission scanning electron microscopy (FESEM). Raman measurements indicated that the degree of C-C sp2 order decreased with boron doping. Lowest threshold fields achieved were 1.0 V/μm and 2.1 V/μm for undoped and boron-doped samples, respectively. © 2008 IOP Publishing Ltd.100PART 5Bonard, J.M., Kind, H., Stöckli, T., Nilsson, L.O., (2001) Sol. State Electron., 45, p. 893Maultzsch, J., Reich, S., Thomsen, C., Webster, S., Czerw, R., Carroll, D.L., Vieira, S.M.C., Rego, C.A., (2002) Appl.Phys.Lett., 81, p. 2647Mondal, K.C., Coville, N.J., Witcomb, M.J., Tejral, G., Havel, J., (2007) Chem. Phys. Lett., , in pressChen, C.F.C., Tsai, C.L., Lin, C.L., (2003) Diam. Rel. Mater., 12, p. 1500Sharma, R.B., Late Joag, D.S., Govindaraj Rao, C.N.R., (2006) Chem.Phys.Lett, 428, p. 102Mennella, V., Monaco, G., Colanoeli, L., Bussoletti, E., (1995) Carbon, 33 (2), p. 11

    A Study Of Thin Al Films On Sn

    No full text
    Thin films of Al thermally deposited on an Sn substrate were studied by means of Auger spectroscopy. The observation of the 66 and 1389 eV Al Auger electrons whose surface sensitivities are quite different gave insight into the morphology of the Al films. All intensities were normalized to their corresponding bulk yields from Al and Sn. The ratio of Al 66 to Al 1389 normalized intensities was found to be constant at 0.43 ± 0.04 even though the normalized Al 1389 intensity varied from 0.05 to 0.95. These results are consistent with the growth of a film composed of islands of Al whose exposed surface is enriched in Sn through a diffusion process. Independent determinations of the rate of adsorption of O2 by these films are consistent with this model. © 1993.22801/02/15162164Chadwick, Christie, Karolewski, (1981) Vacuum, 31, p. 705Roberts, Dobson, (1986) Thin Solid Films, 135, p. 137Peeters, Slavin, (1989) Surf. Sci., 214, p. 85Stucki, Erbudak, Kostorz, (1987) Appl. Surf. Sci., 27, pp. 393-40

    Fabrication Of Tubes Of Diamond With Micrometric Diameters And Their Characterization

    No full text
    The fabrication and characterization of 'self-supporting' diamond tubes grown by chemical vapor deposition (CVD) are reported. Diamond layers were deposited onto tungsten wires with diameters of 238 μm; the tungsten cores were subsequently completely removed by etching to leave 'self-supporting' diamond tubes with a diameter of approximately 400 μm and length of 20 mm. A hot-filament CVD system fed with ethanol highly diluted in hydrogen was employed. Growth rates of 7.8 μm h-1 have been measured and incubation times >3 h have been estimated. Scanning electron microscopy of cross-sections revealed columnar structures, which terminate on sharp (111) facets on the tube's external surface. Raman spectroscopy showed that the tube structure is predominantly composed of C-C sp3 bonds, with intrinsic tensile stresses. © 2002 Elsevier Science B.V. All rights reserved.420-421151154Angus, J.C., Hayman, C.C., (1988) Science, 241, p. 913Yarborough, W.A., Messier, R., (1990) Science, 241, p. 688Corat, E.J., Trava-Airoldi, V.J., Baranauskas, V., (1998) Key Eng. Mater., 138 (1), p. 195Morrish, A.A., Glesener, J.W., Fehrenbacher, M., Person, P.E., Maruyama, B., Natishan, P.M., (1994) Diamond Relat. Mater., 3, p. 173May, P.W., Rego, C.A., Thomas, R.M., Ashfold, M.N.R., Rosser, K.N., Everitt, N.M., (1994) Diamond Relat. Mater., 3, p. 810Baranauskas, V., Ceragioli, H.J., Peterlevitz, A.C., Durrant, S.F., (2001) Thin Solid Films, 398, p. 250Baranauskas, V., Peled, A., Trava-Airoldi, V.J., Lima, C.A.S., Doi, I., Corat, E.J., (1994) Appl. Surf. Sci., 79-80, p. 129Barros, R.C.M., Corat, E.J., Ferreira, N.G., Souza, T.M., Trava-Airoldi, V.J., Leite, N.F., Iha, K., (1996) Diamond Relat. Mater., 5, p. 1323Whitfield, M.D., Savage, J.A., Jackman, R.B., (2000) Diamond Relat. Mater., 9, p. 262Zhu, W., McCune, R.R., DeVries, J.E., Tamor, M.A., Simon Ng, K.Y., (1995) Diamond Relat. Mater., 4, p. 220Shi, C.R., Avyigal, Y., Dirnfeld, S., Hoffman, A., Fayer, A., Kalish, R., (1995) Diamond Relat. Mater., 4, p. 1079Stoner, B.R., Ma, G.H.M., Wolter, S.D., Glass, J.T., (1992) Phys. Rev. B, 45, p. 11067Trava-Airoldi, V.J., Corat, E.J., Pena, A.F., Leite, N.F., Valera, M.C., Freitas, J.R., Baranauskas, V., (1996) Rev. Sci. Instrum., 67 (5), p. 1993Trava-Airoldi, V.J., Corat, E.J., Penã, A.F.V., Leite, N.F., Baranauskas, V., (1995) Diamond Relat. Mater., 4 (11), p. 125

    Nanostructured Diamond And Diamond-like Materials For Application In Field-emission Devices

    No full text
    Nanostructured diamond and diamond-like materials having good field electron emission properties have been prepared using a hot-filament assisted chemical vapour deposition system fed with ethanol/hydrogen/helium mixtures. The changes in the structure of the samples were determined by the hydrogen content in the gas mixture and varied from samples of nanocrystalline diamond with graphitic connection between the grains (for helium concentration 40 vol%). Although the samples had such structural differences, low threshold values for electron field emission in vacuum were observed for representative samples of low and high hydrogen concentrations in the gas feed.1510S678S683Yang, T.-S., Lay, J.-Y., Wong, M.-S., Cheng, C.-L., (2002) J. Appl. Phys., 92, p. 2133Mammanav, P., Santos, T.E.A., Mammana, A., Baranauskas, V., Ceragioli, H.J., Peterlevitz, A.C., (2002) Appl. Phys. Lett., 81, p. 3470Gruen, D.M., (1998) MRS Bull, 9, p. 32Jin, B.M., Kim, J., Kim, C.C., (1997) Appl. Phys. A, 65, p. 53Himpsel, F.J., Knapp, J.A., Vanvechten, J.A., Eastman, P.E., (1979) Phys. Rev. B, 20, p. 624Bandis, C., Pate, B.B., (1996) Appl. Phys. Lett., 69, p. 366Okano, K., Yamada, T., Suave, A., Koizumi, S., Pate, B.B., (1999) Appl. Surf. Sci., 146, p. 274Kurt, R., Bonard, J.-M., Karimi, A., (2001) Diamond Relat. Mater., 10, p. 1962Bonnot, A.M., Deldem, M., Beaugnon, E., Fournier, T., Schouler, M.C., Mermoux, M., (1999) Diamond Relat. Mater., 8, p. 631Gruen, D.M., Liu, S., Krauss, A.R., Liuy, A., Luo, J., Foster, C.M., (1994) J. Vac. Sci. Technol., A12, p. 1491Lin, T., Yu, G.Y., Wee, A.T.S., Shen, Z.X., (2000) Appl. Phys. Lett., 77, p. 2692Zhou, D., McCauley, T.G., Qin, L.C., Krauss, A.R., Gruen, M., (1998) J. Appl Phys., 83, p. 540Sun, Z., Shi, J.R., Tay, B.K., Lau, S.P., (2000) Diamond Relat. Mater., 9, p. 1979McGinnis, S.P., Kelly, M.A., Hagström, S.B., Alvis, R.L., (1996) J. Appl. Phys., 79, p. 170Jiang, X., Jia, C.L., (2002) Appl. Phys. Lett., 80, p. 2269Wu, K., Wang, E.G., Cao, Z.X., Wang, Z.L., Jiang, X., (2000) J. Appl. Phys., 88, p. 2967Proffitt, S.S., Probert, S.J., Whitfield, M.D., Foord, J.S., Jackman, R.B., (1999) Diamond Relat. Mater., 8, p. 768Baranauskas, V., Peled, A., Trava-Airoldi, V.J., Lima, C.A.S., Doi, I., Corat, E.J., (1994) Appl. Surf. Sci., 79-80, p. 129Patterson, J.R., Kudryavtsev, A., Vohra, Y.K., (2002) Appl. Phys. Lett., 81, p. 2073Bonard, J.-M., Kind, H., Stöckli, T., Nilson, L.O., (2001) Solid-state Electron., 45, p. 89
    corecore