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Abstract. Nanostructured diamond doped with sulphur has been prepared using a hot-filament 

assisted chemical vapour deposition system fed with an ethyl alcohol, carbon disulfide, 

hydrogen, and argon mixture. The reduction of diamond grains to the nanoscale is relevant to 

create a network of defective grain boundaries which may be n-type doped to facilitate the 

transport and injection of electrons to the diamond grains located at the vacuum interface, 

enhancing the electron field-emission properties of the samples.  The downsizing was produced 

by secondary nucleation and defects induced by sulphur and argon atoms in the chemical 

vapour deposition surface reactions. Sulphur also acts as an n-type dopant of diamond. Raman 

measurements show that the samples are nanodiamonds embedded in a matrix of graphite and 

disordered carbon grains and the morphology, revealed by field electron scanning microscopy, 

shows that the grains are in the range of 10 to 30 nm. The lowest threshold achieved for field 

emission was 13.20 V/µm.   

1.  Introduction 
Research on preparing nanostructured materials has been of high scientific and technological interest 

because they may have new or improved properties compared to those of the bulk.  Nano-sized 

diamond structures may have interesting properties such as better optical transmission, higher density 

of defect cores, enhanced quantum electronic conduction, and better field electron emission (FEE), 

compared to micron-sized diamond [1-5].  

Diamond attracts a great deal of interest since its surfaces possess low or even negative electron 

affinity (NEA), i. e. low energy or no energy at all is necessary to extract electrons from the diamond 

surface to a vacuum environment [6]. However the concentration of intrinsic electrons in the 

conduction band of diamond is very low and it is difficult to dope diamond crystals with electron-

donor impurities to produce n-type diamonds. Therefore, even with this favorable electron affinity, 

crystalline diamonds are poor field emitters because the transport of electrons through the bulk for 

emission at the diamond-vacuum interface is difficult [7-8].  

Possible solutions to improve diamond field emission are either (i) to downsize the diamond grains 

to nano-scale to maximize the network of defective grain boundaries of non-diamond carbon or (ii) to 

find an atomic element to n-dope diamond. Both solutions may facilitate the transport and injection of 

electrons to the diamond grains located at the vacuum interface. 

IOP Publishing Journal of Physics: Conference Series 61 (2007) 66–70
doi:10.1088/1742-6596/61/1/014 International Conference on Nanoscience and Technology (ICN&T 2006)

66© 2007 IOP Publishing Ltd



Nanocrystalline diamond can be grown by a variety of methods based on processes with high rates 

of secondary nucleation, such as microwave plasma or hot-filament CVD [2-3, 9-10]. Fullerenes [11], 

or methane [9-10], or ethyl alcohol [2-3], have been used as carbon sources, diluted in hydrogen, 

nitrogen, argon or helium. Methane and H2S diluted in hydrogen (50 – 500 ppm) have also been used 

to achieve the downsizing of the diamond grains and possible n-doping of the nanocrystallites with 

sulphur atoms [12-15] 

In this work, we report the use of high purity carbon disulfide (CS2) diluted in ethyl alcohol, 

hydrogen and argon to synthesize nanostructured diamond samples, using the hot-filament technique. 

Morphological data obtained by field emission scanning electron microscopy (FESEM), Raman 

spectroscopic analyses and field emission properties of the samples are given and discussed. 

2.  Experimental Section 

The nano-sized structures were synthesized by hot-filament chemical vapor deposition (HFCVD) 

using ethyl alcohol (C2H5OH) vapor as the carbon source, diluted in a mixture of hydrogen (29.5 % 

vol.) and argon (70 % vol.). High purity carbon disulfide (CS2) was also diluted in ethyl alcohol and 

used as the source of sulphur atoms. An S/C concentration ratio of 1600 ppm in the doping feed-stock 

was used. A total flow rate of around 93 sccm, regulated by precision mass flow controllers, and a 

total pressure of about 20 Torr were maintained throughout.  Polished silicon wafers (10 mm x 10 mm 

square) of 0.8 mm thickness, were used as substrates, placed below the hot-filament coil. The 

deposition temperature was measured by a thermocouple beneath the Si substrates and corrected to 

express the temperature at the deposition surface. The ideal temperature for the growth of diamond 

samples with ~1 µm crystallites without argon or CS2 in the gas feed was experimentally determined 

by trial and error as T = 1300 K. Argon (70 % vol.) and CS2 were then incorporated into the feed to 

shift the equilibrium towards the formation of diamond nanocrystallites or other carbon structures and 

the deposition temperature decreased to T = 1143 K.    Deposition times of 6 h were used in all 

experiments. 

Morphological analyses were made by Field Emission Scanning Electron Microscope (FESEM) 

using a JEOL JSM-6330F operated at 5 kV, 8 µA.  Raman spectra were recorded at the ambient 

temperature using a Renishaw microprobe system, employing an Argon laser for excitation (λ = 514.5 

nm) at a laser power of about 6 mW.   

The characterization of field emission properties was performed in a specially designed vacuum 

system by the control of the distance (d) and parallelism between anode-cathode (samples) surfaces 

using a precisely combined XYZ-angular micrometer stage. Measurement of the current versus bias 

voltage (I-V) was undertaken for a fixed anode-cathode distance of d = 700 µm in the parallel plate 

configuration.  A Cu rod of 3 mm diameter was used as anode. The threshold field (Eth) was measured 

by the slope of the bias (for a standard electron current density of 500 nAcm
-2

) versus anode-cathode 

distance curves, fitted by straight lines.   

3.  Results and Discussion 
Figure 1 (a)-(d) shows typical top-view FESEM images of as-deposited samples produced by the CVD 

process with argon and CS2, as described in Section 2. The morphologies observed in Figure 1 (a) are 

of aggregates of round-shaped features of ~ 1 µm diameter, forming a continuous film but with some 

boundary ruptures. The round-shaped features are formed by an apparently random coalescence of 

carbon nuclei. The magnified images of Figure 1 (b) and Figure 1 (c) show that such nuclei display 

grain dimensions of less than 100 nm, without any identifiable form.  Magnification of the image 

shown in Figure 1 (c) (see Figure 1 (d)) shows that grains of 10 to 30 nm are identifiable.  A typical 

growth rate of ~ 0.3 µmh
-1

 was calculated by measuring the thickness of the deposited films after the 

cross-sectional fracture of the samples. 

Figure 2 shows a typical Raman spectrum taken with a laser wavelength of 514.5 nm.  The 

spectrum shows peaks at 1140 cm
-1

, 1335 cm
-1

, 1360 cm
-1

, 1470 cm
-1

 and 1550 cm
-1

, which are  
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                                   (a)                                    (b) 

                                  (c)                                  (d) 

Figure 1.  Typical FESEM images of the as-deposited samples at different magnifications 

expected features for nanocrystalline diamond. The peak that appears at 1337 cm
-1

 is characteristic of 

diamond C-C sp
3
 bonds, and is close to the accepted value (1332 cm

-1
) for natural diamond. The peaks 

at 1350 cm
-1

 and 1550 cm
-1

 correspond to the D and G modes of disordered carbon. The nature of the 

peak at 1140 cm
-1

 has been of some controversy [16-18] since some authors believe that it originates 

from confined phonon modes in nanocrystalline diamond and others claim that it is associated with C-

C sp
2
 vibrations at hydrogenated grain boundaries, where polyacetylene may be present [17-18]. The 

peak at 1470 cm
-1

 may also be assigned to polyacetylene [18] or nanocrystalline diamond [17]. 

Typical electron emission results are shown in Figure 3 (a)-(b) by plotting the current versus bias 

voltage (I-V) data for a fixed cathode-anode distance of 700 µm (Figure 3 (a)) and plotting the typical 

threshold voltage (Vth) versus the distance necessary to produce a standard threshold current density of 

about 500 nAcm
-2

 (Figure 3 (b)). A linear fit to this data provides the typical threshold field (Eth) for 

each sample. The lowest threshold field achieved was 13.20 V/µm. This value is close to those 

achieved for S-doped microcrystalline diamond films (12.0 V/µm) prepared with H2S doping [12].  

However, most of the samples (77 % of n = 9) presented threshold fields above 20 V/µm. The best 

threshold fields for electron emission of nanotubes, graphenes and nanostructured diamond are in the 

range of 1 to 10 V/µm [2-3, 9, 12, 19-20]. 
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Figure 2.  Typical Raman spectrum taken with a laser wavelength of 514.5 nm. 
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Figure 3. (a)  Typical field emission current-voltage data,  (b) Threshold voltage (Vth) versus distance 

necessary to produce a standard threshold current density of about 500 nAcm
-2

. 

Nanocrystralline CVD diamond is characterized by a small grain size, and described as sp
3
 bonded 

grains (nanodiamond) embedded in a matrix of sp
2
 bonded carbon (nanographite) [15]. The small 

grain size is attributed to a high renucleation rate due to the increase of C2 formation in the argon-rich 

feed gas mixture. Grain size is also reduced due to the participation of sulphur-containing species in 

the deposition reactions, such as CS, and the incorporation of sulphur in the film structure and at grain 

boundaries [12-13]. Sulphur also enhances diamond secondary nucleation [14]. The Raman scattering 

and FESEM images (Figure 1 (a)-(d)) reveal very small crystallites, consistent with a highly sulphur-

doped carbon deposition in an argon-rich feed gas mixture. 

Since a high concentration of CS2 was used in the CVD feed, a large concentration of sulphur is 

expected to be incorporated into the samples, but owing due to its large covalent radius sulphur may 

not easily substitute carbon in the diamond lattice to act as an ionized active electron-donor, but may 
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induce lattice and surface defects. The electron transport through conductive paths at grain boundaries, 

and the increase in the density of emission sites due to the nanosizing of diamond crystallites, may be 

the dominant effects observed in low threshold field emission samples.    

4.  Conclusions 
Sulphur-doped nanocrystalline diamond films were synthesized by hot-filament chemical vapor 

deposition using carbon disulfide diluted in ethyl alcohol, hydrogen and argon. Sulphur and argon 

increased secondary nucleation and the local disorder of the diamond grain boundaries, which leads to 

grains in the range of 10 to 30 nm.  Raman measurements show that the nanodiamonds are embedded 

in a matrix of graphite and disordered carbon grains. The lowest threshold achieved for electron field 

emission was 13.20 V/µm. We suggest that the enhancement in field emission is due to the increase in 

electron transport through sulphur-doped grains and intergranular surface defects.   
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