71 research outputs found
Assessing Temperate Forest Growth and Climate Sensitivity in Response to a Long-Term Whole-Watershed Acidification Experiment
Acid deposition is a major biogeochemical driver in forest ecosystems, but the impacts of long-term changes in deposition on forest productivity remain unclear. Using a combination of tree ring and forest inventory data, we examined tree growth and climate sensitivity in response to 26 years of whole-watershed ammonium sulfate ((NH4)2SO4) additions at the Fernow Experimental Forest (West Virginia, USA). Linear mixed effects models revealed species-specific responses to both treatment and hydroclimate variables. When controlling for environmental covariates, growth of northern red oak (Quercus rubra), red maple (Acer rubrum), and tulip poplar (Liriodendron tulipifera) was greater (40%, 52%, and 42%, respectively) in the control watershed compared to the treated watershed, but there was no difference in black cherry (Prunus serotina). Stem growth was generally positively associated with growing season water availability and spring temperature and negatively associated with vapor pressure deficit. Sensitivity of northern red oak, red maple, and tulip poplar growth to water availability was greater in the control watershed, suggesting that acidification treatment has altered tree response to climate. Results indicate that chronic acid deposition may reduce both forest growth and climate sensitivity, with potentially significant implications for forest carbon and water cycling in deposition-affected regions
Is the northern high-latitude land-based CO2 sink weakening?
Author Posting. © American Geophysical Union, 2011. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 25 (2011): GB3018, doi:10.1029/2010GB003813.Studies indicate that, historically, terrestrial ecosystems of the northern high-latitude region may have been responsible for up to 60% of the global net land-based sink for atmospheric CO2. However, these regions have recently experienced remarkable modification of the major driving forces of the carbon cycle, including surface air temperature warming that is significantly greater than the global average and associated increases in the frequency and severity of disturbances. Whether Arctic tundra and boreal forest ecosystems will continue to sequester atmospheric CO2 in the face of these dramatic changes is unknown. Here we show the results of model simulations that estimate a 41 Tg C yrâ1 sink in the boreal land regions from 1997 to 2006, which represents a 73% reduction in the strength of the sink estimated for previous decades in the late 20th century. Our results suggest that CO2 uptake by the region in previous decades may not be as strong as previously estimated. The recent decline in sink strength is the combined result of (1) weakening sinks due to warming-induced increases in soil organic matter decomposition and (2) strengthening sources from pyrogenic CO2 emissions as a result of the substantial area of boreal forest burned in wildfires across the region in recent years. Such changes create positive feedbacks to the climate system that accelerate global warming, putting further pressure on emission reductions to achieve atmospheric stabilization targets.This study was supported through grants
provided as part of the Arctic System Science Program (NSF OPPâ
0531047), the North American Carbon Program (NASA NNG05GD25G),
and the Bonanza Creek LongâTerm Ecological Program (funded jointly by
NSF grant DEBâ0423442 and USDA Forest Service, Pacific Northwest
Research Station grant PNW01âJV11261952â231)
Enhancing Nutrient Use Efficiencies in Rainfed Systems
Successful and sustained crop production to feed burgeoning population in rainfed areas, facing soil fertility-related degradation through low and imbalanced amounts of nutrients, requires regular nutrient inputs through biological, organic or inorganic sources of fertilizers. Intensification of fertilizer (all forms) use has given rise to concerns about efficiency of nutrient use, primarily driven by economic and environmental considerations. Inefficient nutrient use is a key factor pushing up the cost of cultivation and pulling down the profitability in farming while putting at stake the sustainability of rainfed farming systems. Nutrient use efficiency implies more produce per unit of nutrient applied; therefore, any soil-water-crop management practices that promote crop productivity at same level of fertilizer use are expected to enhance nutrient use efficiency. Pervasive nutrient depletion and imbalances in rainfed soils are primarily responsible for decreasing yields and declining response to applied macronutrient fertilizers. Studies have indicated soil test-based balanced fertilization an important driver for enhancing yields and improving nutrient use efficiency in terms of uptake, utilization and use efficiency for grain yield and harvest index indicating improved grain nutritional quality. Recycling of on-farm wastes is a big opportunity to cut use and cost of chemical fertilizers while getting higher yield levels at same macronutrient levels. Best management practices like adoption of high-yielding and nutrient-efficient cultivars, landform management for soil structure and health, checking pathways of nutrient losses or reversing nutrient losses through management at watershed scale and other holistic crop management practices have great scope to result in enhancing nutrient and resource use efficiency through higher yields. The best practices have been found to promote soil organic carbon storage that is critical for optimum soil processes and improve soil health and enhance nutrient use efficiency for sustainable intensification in the rainfed systems
Factors controlling denitrification in a Chihuahuan Desert ecosystem
Denitrification may be an important pathway for N loss from desert ecosystems. Few studies, however, have investigated the factors limiting this process in a desert environment. A factorial experiment was conducted to determine the factors controlling denitrification in the northern Chihuahuan Desert. Specifically, we measured the response of denitrification to additions of water, C, N, and C + N. Soil cores were collected from four vegetation zones along an alluvial piedmont. Dry cores were subjected to five treatments: (i) water; (ii) water + NO3; (iii) water + C; (iv) water + NO3 + C; and (v) a control (no additions). When denitrification rates were averaged across vegetation zones and patch types (between or under vegetation), the following treatment effects were significantly different: water + NO3 + C >» water + NO3 = water » water + C > control. These results indicate that denitrification at this site is limited by the availability of water. In wet soil cores, C additions immobilized available NO3 and suppressed denitrification. When water + NO3 + C was added (C/N = 22), however, denitrification was significantly greater than when water + NO3 were added. This result indicates that C and N interact to control denitrification in wet desert soils. No evidence for an overall NO, limitation in moist cores was found. Surprisingly, denitrification rates in wet cores of nutrientpoor desert soils (=32.9 ng N cm-2 Ir1) were similar to those measured in the nutrient-rich soils of temperate and tropical forests. When extrapolated to an annual rate, denitrification for this site is 7.22 kg N ha"1 yr1. Extreme drying-wetting cycles common in desert ecosystems may account for the high rates observed
- âŠ