239 research outputs found

    Fishes of the Lake Eyre catchment of central Australia

    Get PDF
    Despite a defining quality of a desert being a lack of water, deserts do have water resources which maintain wildlife, especially aquatic wildlife, much of which cannot survive without permanent water. Around 70% of the land mass of Australia is considered arid and the arid areas can be separated broadly into two regions based on its fishes. The western portion includes the inland drainages from west of the Finke River near Alice Springs in the Northern Territory to the edge of the Pilbara in Western Australia. This massive area is largely unexplored for fishes partly because of its remoteness and very scant water resources. The eastern portion, now renamed the Lake Eyre Region, extends from the Finke River east to the Bulloo River at Quilpie and from Mount Isa in Queensland in the north to Broken Hill in New South Wales in the south. This region contains a fascinating assemblage of aquatic animals in a variety of habitats, including a characteristic grouping of fish (33 native species) and the fish communities are in remarkably good condition. The aquatic habitats and the aquatic flora and fauna are described and the management of fishes, wetlands and catchments is discussed. Description, habitat, biology and distribution details are provided for 13 families of fish of the Lake Eyre Region, together small colour photographs

    New records of Hatcheria macraei (Siluriformes, Trichomycteridae) from Chilean Province

    Get PDF

    Population genetics and dispersal of the flatworm,Polycelis coronata:a test of the habitat stability hypothesis

    Get PDF
    The habitat stability hypothesis states that species in spring-like habitats have little reason to disperse compared to species in temporary habitats. Planarians commonly inhabit springs around the world and they have long been considered poor dispersers. Recently, however, genetic analyses have shown contradictory results on the dispersal of planarians. Asexual planarians that can establish a new population by colonization of a single individual showed little genetic differentiation between sites separated by hundreds of kilometers, whereas species inhabiting springs showed deep differentiation between sites separated by hundreds of meters. The latter results are consistent with the habitat stability hypothesis. We used the cytochrome oxidase subunit I gene from 468 individuals of Polycelis coronata, an asexual species, collected from 50 sites, nested in 26 tributaries, in 4 catchments of the Wasatch Mountains of Utah, USA, to explore the dispersal capabilities of P. coronata. The longest distance between sites was 66 km. Despite this small spatial extent, we found that 77% of the 130 haplotypes were collected from a single site and 89% from a single catchment. FST values between local populations in the same tributary (0.221, 0.266, 0.389) were similar to the average FST values in different catchments for other headwater taxa. Also, variation among individuals accounted for the majority of genetic structuring with little differentiation beyond the scale of a single site. Dispersal is very slow in this species which is consistent with the habitat stability hypothesis. However, we suggest that other explanations also warrant consideration. We also identified two potential cryptic species suggesting a high degree of hidden variation at the level of species in this genus

    Did Common Disjunct Populations of Freshwater Fishes in Northern Australia form from the Same Biogeographic Events?

    Get PDF
    Several freshwater fishes have disjunct (geographically discrete and widely spaced) distributions across northern Australia. We used mitochondrial deoxyribonucleic acid (mtDNA) data and phylogeographic analyses to examine the origin of these common disjunct distributions and to test the hypothesis that they were a result of a single biogeographic event. These disjunct distributions are not perfectly shared among species, but we selected 3 species that have wide ranges with the most similar disjunct geographic overlap: Spotted Blue Eye (Pseudomugil gertrudae), Pennyfish (Denariusa australis), and MacCulloch's Rainbow Fish (Melanotaenia maccullochi). Despite similarity in their present-day disjunct distributions, spatial genetic patterns varied considerably among the 3 species in terms of measures of molecular diversity, number of mtDNA lineages within each species, inter-and intra-regional spatial distribution of individual lineages within species, and degree of partitioning of genetic variation among regions. Pseudomugil gertrudae and D. australis each contained 1 to 2 divergent lineages at particular sites in 1 of the regions (Top End), but both species also contained lineages in this region that were more closely related to conspecific populations in other regions. Two regional populations (Top End and Northern Cape York Peninsula) of M. maccullochi consisted exclusively of highly divergent lineages that probably reflect cryptic species. When the divergent lineages within each species were excluded from temporal analyses, a single vicariant event among regions could not be rejected. Our results indicate that several regional populations are long-term relicts for M. maccullochi and that several sites within Top End are associated with localized long-term refugia for P. gertrudae and D. australis. A single biogeographic event in the mid-to late-Pleistocene may have created broadscale separation of most populations of these species.Full Tex

    A fossil-calibrated time-tree of all Australian freshwater fishes

    Get PDF
    Australian freshwater fishes are a relatively species-poor assemblage, comprising a small number of Gondwanan lineages and a number of groups derived from repeated freshwater invasions by marine ancestors. In addition to being a comparatively small assemblage, they are both highly endemic and highly threatened. However, a comprehensive phylogeny for these taxa is lacking, which has hampered efforts to study their phylogenetic diversity, distribution of extinction risk, speciation rate, and rates of trait evolution. Here, we present a comprehensive dated phylogeny of 412 Australian freshwater fishes. We include all formally recognized freshwater species plus a number of genetically distinct subpopulations, species awaiting formal description, and predominantly brackish-water species. The phylogeny was inferred using maximum-likelihood analysis of a multilocus data set comprising six mitochondrial and three nuclear genes from 326 taxa. We inferred the evolutionary timescale using penalized likelihood, then used a statistical approach to add 86 taxa for which no molecular data were available. The time-tree inferred in our study will provide a useful resource for macroecological studies of Australian freshwater fishes, by enabling corrections for phylogenetic non-independence in evolutionary and ecological comparative analyses

    Herbivory promotes dental disparification and macroevolutionary dynamics in grunters (teleostei: Terapontidae), a freshwater adaptive radiation

    Get PDF
    Trophic shifts into new adaptive zones have played major (although often conflicting) roles in reshaping the evolutionary trajectories of many lineages. We analyze data on diet, tooth, and oral morphology and relate these traits to phenotypic disparification and lineage diversification rates across the ecologically diverse Terapontidae, a family of Australasian fishes. In contrast to carnivores and most omnivores, which have retained relatively simple, ancestral caniniform tooth shapes, herbivorous terapontids appear to have evolved a variety of novel tooth shapes at significantly faster rates to meet the demands of plant-based diets. The evolution of herbivory prompted major disparification, significantly expanding the terapontid adaptive phenotypic continuum into an entirely novel functional morphospace. There was minimal support for our hypothesis of faster overall rates of integrated tooth shape, spacing, and jaw biomechanical evolution in herbivorous terapontids in their entirety, compared with other trophic strategies. There was, however, considerable support for accelerated disparification within a diverse freshwater clade containing a range of specialized freshwater herbivores. While the evolutionary transition to herbivorous diets has played a central role in terapontid phenotypic diversification by pushing herbivores toward novel fitness peaks, there was little support for herbivory driving significantly higher lineage diversification compared with background rates across the family

    Different processes lead to similar patterns: a test of codivergence and the role of sea level and climate changes in shaping a southern temperate freshwater assemblage

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Understanding how freshwater assemblages have been formed and maintained is a fundamental goal in evolutionary and ecological disciplines. Here we use a historical approach to test the hypothesis of codivergence in three clades of the Chilean freshwater species assemblage. Molecular studies of freshwater crabs (<it>Aegla</it>: Aeglidae: Anomura) and catfish (<it>Trichomycterus arealatus</it>: Trichomycteridae: Teleostei) exhibited similar levels of genetic divergences of mitochondrial lineages between species of crabs and phylogroups of the catfish, suggesting a shared evolutionary history among the three clades in this species assemblage.</p> <p>Results</p> <p>A phylogeny was constructed for <it>Trichomycterus areolatus </it>under the following best-fit molecular models of evolution GTR + I + R, HKY + I, and HKY for cytochrome <it>b</it>, growth hormone, and rag 1 respectively. A GTR + I + R model provided the best fit for both 28S and mitochondrial loci and was used to construct both <it>Aegla </it>phylogenies. Three different diversification models were observed and the three groups arose during different time periods, from 2.25 to 5.05 million years ago (Ma). Cladogenesis within <it>Trichomycterus areolatus </it>was initiated roughly 2.25 Ma (Late Pliocene - Early Pleistocene) some 1.7 - 2.8 million years after the basal divergences observed in both <it>Aegla </it>clades. These results reject the hypothesis of codivergence.</p> <p>Conclusions</p> <p>The similar genetic distances between terminal sister-lineages observed in these select taxa from the freshwater Chilean species assemblage were formed by different processes occurring over the last ~5.0 Ma. Dramatic changes in historic sea levels documented in the region appear to have independently shaped the evolutionary history of each group. Our study illustrates the important role that history plays in shaping a species assemblage and argues against assuming similar patterns equal a shared evolutionary history.</p

    Phylogeny, diversification, and biogeography of a hemiclonal hybrid system of native Australian freshwater fishes (Gobiiformes:Gobioidei: Eleotridae: Hypseleotris)

    Get PDF
    BACKGROUND: Carp gudgeons (genus Hypseleotris) are a prominent part of the Australian freshwater fish fauna, with species distributed around the western, northern, and eastern reaches of the continent. We infer a calibrated phylogeny of the genus based on nuclear ultraconserved element (UCE) sequences and using Bayesian estimation of divergence times, and use this phylogeny to investigate geographic patterns of diversification with GeoSSE. The southeastern species have hybridized to form hemiclonal lineages, and we also resolve relationships of hemiclones and compare their phylogenetic placement in the UCE phylogeny with a hypothesis based on complete mitochondrial genomes. We then use phased SNPs extracted from the UCE sequences for population structure analysis among the southeastern species and hemiclones. RESULTS: Hypseleotris cyprinoides, a widespread euryhaline species known from throughout the Indo-Pacific, is resolved outside the remainder of the species. Two Australian radiations comprise the bulk of Hypseleotris, one primarily in the northwestern coastal rivers and a second inhabiting the southeastern region including the Murray–Darling, Bulloo-Bancannia and Lake Eyre basins, plus coastal rivers east of the Great Dividing Range. Our phylogenetic results reveal cytonuclear discordance between the UCE and mitochondrial hypotheses, place hemiclone hybrids among their parental taxa, and indicate that the genus Kimberleyeleotris is nested within the northwestern Hypseleotris radiation along with three undescribed species. We infer a crown age for Hypseleotris of 17.3 Ma, date the radiation of Australian species at roughly 10.1 Ma, and recover the crown ages of the northwestern (excluding H. compressa) and southeastern radiations at 5.9 and 7.2 Ma, respectively. Range-dependent diversification analyses using GeoSSE indicate that speciation and extinction rates have been steady between the northwestern and southeastern Australian radiations and between smaller radiations of species in the Kimberley region and the Arnhem Plateau. Analysis of phased SNPs confirms inheritance patterns and reveals high levels of heterozygosity among the hemiclones. CONCLUSIONS: The northwestern species have restricted ranges and likely speciated in allopatry, while the southeastern species are known from much larger areas, consistent with peripatric speciation or allopatric speciation followed by secondary contact. Species in the northwestern Kimberley region differ in shape from those in the southeast, with the Kimberley species notably more elongate and slender than the stocky southeastern species, likely due to the different topographies and flow regimes of the rivers they inhabit

    Distributed under Creative Commons CC-BY 4.0 OPEN ACCESS Who&apos;s your mama? Riverine hybridisation of threatened freshwater Trout Cod and Murray Cod

    Get PDF
    ABSTRACT Rates of hybridization and introgression are increasing dramatically worldwide because of translocations, restocking of organisms and habitat modifications; thus, determining whether hybridization is occuring after reintroducing extirpated congeneric species is commensurately important for conservation. Restocking programs are sometimes criticized because of the genetic consequences of hatchery-bred fish breeding with wild populations. These concerns are important to conservation restocking programs, including those from the Australian freshwater fish family, Percichthyidae. Two of the better known Australian Percichthyidae are the Murray Cod, Maccullochella peelii and Trout Cod, Maccullochella macquariensis which were formerly widespread over the Murray Darling Basin. In much of the Murrumbidgee River, Trout Cod and Murray Cod were sympatric until the late 1970s when Trout Cod were extirpated. Here we use genetic single nucleotide polymorphism (SNP) data together with mitochondrial sequences to examine hybridization and introgression between Murray Cod and Trout Cod in the upper Murrumbidgee River and consider implications for restocking programs. We have confirmed restocked riverine Trout Cod reproducing, but only as inter-specific matings, in the wild. We detected hybrid Trout Cod-Murray Cod in the Upper Murrumbidgee, recording the first hybrid larvae in the wild. Although hybrid larvae, juveniles and adults have been recorded in hatcheries and impoundments, and hybrid adults have been recorded in rivers previously, this is the first time fertile F1 have been recorded in a wild riverine population. The F1 backcrosses with Murray cod have also been found to be fertile. All backcrosses noted were with pure Murray Cod. Such introgression has not been recorded previously in these two species, and the imbalance in hybridization direction may have important implications for restocking programs

    Influence of Introgression and Geological Processes on Phylogenetic Relationships of Western North American Mountain Suckers (Pantosteus, Catostomidae)

    Get PDF
    Intense geological activity caused major topographic changes in Western North America over the past 15 million years. Major rivers here are composites of different ancient rivers, resulting in isolation and mixing episodes between river basins over time. This history influenced the diversification of most of the aquatic fauna. The genus Pantosteus is one of several clades centered in this tectonically active region. The eight recognized Pantosteus species are widespread and common across southwestern Canada, western USA and into northern Mexico. They are typically found in medium gradient, middle-elevation reaches of rivers over rocky substrates. This study (1) compares molecular data with morphological and paleontological data for proposed species of Pantosteus, (2) tests hypotheses of their monophyly, (3) uses these data for phylogenetic inferences of sister-group relationships, and (4) estimates timing of divergence events of identified lineages. Using 8055 base pairs from mitochondrial DNA protein coding genes, Pantosteus and Catostomus are reciprocally monophyletic, in contrast with morphological data. The only exception to a monophyleticPantosteus is P. columbianus whose mtDNA is closely aligned with C. tahoensis because of introgression. Within Pantosteus, several species have deep genetic divergences among allopatric sister lineages, several of which are diagnosed and elevated to species, bringing the total diversity in the group to 11 species. Conflicting molecular and morphological data may be resolved when patterns of divergence are shown to be correlated with sympatry and evidence of introgression
    corecore